1 |
张伏, 陈自均, 鲍若飞, 等. 基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别[J]. 农业工程学报, 2021, 37(16): 270-278.
|
|
ZHANG F, CHEN Z, BAO R, et al. Recognition of dense cherry tomatoes based on improved YOLOv4-LITE lightweight neural network[J]. Transactions of the CSAE, 2021, 37(16): 270-278.
|
2 |
刘天真, 滕桂法, 苑迎春, 等. 基于改进YOLO v3的自然场景下冬枣果实识别方法[J]. 农业机械学报, 2021, 52(5): 17-25.
|
|
LIU T, TENG G, YUAN Y, et al. Winter jujube fruit recognition method based on improved YOLOv3 under natural scene[J]. Transactions of the CSAM, 2021, 52(5): 17-25.
|
3 |
KANG H, CHEN C. Fruit detection. segmentation and 3D visualisation of environments in apple orchards[J]. Computers and Electronics in Agriculture, 2020, 171: ID 105302.
|
4 |
WANG Y, LYU J, XU L, et al. A segmentation method for waxberry image under orchard environment[J]. Scientia Horticulturae, 2020, 266: ID 109309.
|
5 |
杜文圣, 王春颖, 朱衍俊, 等. 采用改进Mask R-CNN算法定位鲜食葡萄疏花夹持点[J]. 农业工程学报, 2022, 38(1): 169-177.
|
|
DU W, WANG C, ZHU Y, et al. Fruit stem clamping points location for table grape thinning using improved mask R-CNN[J]. Transactions of the CSAE, 2022, 38(1): 169-177.
|
6 |
陈新, 伍萍辉, 祖绍颖, 等. 基于改进SSD轻量化神经网络的番茄疏花疏果农事识别方法[J]. 中国瓜菜, 2021, 34(9): 38-44.
|
|
CHEN X, WU P, ZU S, et al. Study on identification method of thinning flower and fruit of tomato based on improved SSD lightweight neural network[J]. China Cucurbits and Vegetables, 2021, 34(9): 38-44.
|
7 |
龙洁花, 郭文忠, 林森, 等. 改进YOLOv4的温室环境下草莓生育期识别方法[J]. 智慧农业(中英文), 2021, 3(4): 99-110.
|
|
LONG J, GUO W, LIN S, et al. Strawberry growth period recognition method under greenhouse environment based on improved YOLOv4[J]. Smart Agriculture, 2021, 3(4): 99-110.
|
8 |
WU D, LYU S, JIANG M, et al. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: ID 105742.
|
9 |
FARJON G, KRIKEB O, HILLEL A, et al. Detection and counting of flowers on apple trees for better chemical thinning decisions[J]. Precision Agriculture, 2020, 21(3): 503-521.
|
10 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2014: 580-587.
|
11 |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]// European Conference on Computer Vision. Berlin, German: Springer, 2016: 21-37.
|
12 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2016: 779-788.
|
13 |
SHAFIEE M J, CHYWL B, LI F, et al. Fast YOLO: A fast you only look once system for real-time embedded object detection in video[J/OL]. arXiv: , 2017.
|
14 |
REDMON J, FARHADI A. Yolov3: An incremental improvement[J/OL]. arXiv: , 2018.
|
15 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv: , 2020.
|
16 |
HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2020: 1580-1589.
|
17 |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv: , 2017.
|
18 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE, 2018.
|
19 |
HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]// The IEEE/CVF International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2019: 1314-1324.
|
20 |
ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2018: 6848-6856.
|
21 |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]// The European Conference on COMPUTER VISIon (ECCV). Piscataway, New York, USA: IEEE, 2018: 116-131.
|
22 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2018: 8759-8768.
|
23 |
TAN M, PANG R, LE Q V. Efficientdet: Scalable and efficient object detection[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2020: 10781-10790.
|