1 | 联合国粮农组织启动联合国 . 2021国际果蔬年[EB/OL][2021-06-30]. . | 2 | 邹攀, 白雪, 陈秋生, 等 . 无损检测技术在果蔬品质评价中应用的研究进展[J]. 安徽农业科学, 2021, 49(2): 1-4. | 2 | ZOU P, BAI X, CHEN Q, et al, Research progress on the application of non-destructive testing technology in fruits and vegetables quality evaluation[J]. Journal of Anhui Agricultural Sciences, 2021, 49(2): 1-4. | 3 | 刘妍, 周新奇, 俞晓峰, 等 . 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 27-37. | 3 | LIU Y , ZHOU X , YU X , et al . Research progress of nondestructive testing techniques for fruit and vegetable quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 27-37. | 4 | 苑进 . 选择性收获机器人技术研究进展与分析[J]. 农业机械学报, 2020, 51(9): 1-17. | 4 | YUAN J . Research progress analysis of robotics selective harvesting technologies[J]. Transactions of the CSAM, 2020, 51(9): 1-17. | 5 | 韩志辉 . 基于产业价值角度的蔬菜品牌提升之道[J]. 蔬菜, 2017(11): 1-6. | 5 | HAN Z . The way to improve vegetable brand based on the perspective of industrial value[J]. Vegetables, 2017(11): 1-6. | 6 | 张雯丽 . “一带一路”战略下我国农业对外合作选择[J]. 农村工作通讯, 2017(5): 52. | 6 | ZHANG W . Agricultural foreign cooperation options of country under the "One Belt One Road" strategy[J]. Rural Work Newsletter, 2017(5): 52. | 7 | 王顺, 黄星奕, 吕日琴, 等 . 水果品质无损检测方法研究进展[J]. 食品与发酵工业, 2018, 44(11): 319-324. | 7 | WANG S , HUANG X , LYU R , et al . Research progress of nondestructive detection methods in fruit quality[J]. Food and Fermentation Industries, 2018, 44(11): 319-324. | 8 | 穆渴心, 蔡俊, 刘枣, 等 . 现代无损检测技术在农产品真菌与真菌毒素侵染中的应用[J]. 中国粮油学报, 2021, 36(8): 123-128. | 8 | MU K , CAI J , LIU Z , et al . Modern non-destructive detection of fungal and mycotoxin infection in agricultural products[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(8): 123-128. | 9 | 卢军党, 刘东琴, 田智辉 . 机器视觉技术在核桃分级检测中的应用[J]. 农产品加工, 2020(20): 106-107. | 9 | LU J , LIU D , TIAN Z . Application of machine vision technology in walnut grading detection[J]. Agricultural Products Processing, 2020(20): 106-107. | 10 | 陈涛 . 计算机视觉技术在农产品品质检测中的应用[J]. 安徽农学通报, 2019, 25(20): 110-113. | 10 | CHEN T . The application of computer vision technology for food quality inspection of agricultural products[J]. Anhui Agricultural Science Bulletin, 2019, 25(20): 110-113. | 11 | COSTA A Z DA , FIGUEROA H E H , FRACAROLLI J A . Computer vision based detection of external defects on tomatoes using deep learning[J]. Biosystems Engineering, 2020, 190: 131-144. | 12 | SU Q , NAOSHI K , LI M , et al . Potato quality grading based on machine vision and 3D shape analysis[J]. Computers and Electronics in Agriculture, 2018, 152: 261-268. | 13 | XIE W , WANG F , YANG D . Research on carrot surface defect detection methods based on machine vision[J]. IFAC-PapersOnLine, 2019, 52(30): 24-29. | 14 | 谢为俊, 魏硕, 王凤贺, 等 . 基于机器视觉的胡萝卜表面缺陷识别方法研究[J]. 农业机械学报, 2020, 51(S1): 450-456. | 14 | XIE W , WEI S , WANG F , et al . Machine vision based defect method of carrot external defects[J]. Transactions of the CSAM, 2020, 51(S1): 450-456. | 15 | 高辉, 马国峰, 刘伟杰 . 基于机器视觉的苹果缺陷快速检测方法研究[J]. 食品与机械, 2020, 36(10): 125-129. | 15 | GAO H , MA G , LIU W . Research on a rapid detection of apple defects based on mechanical vision[J]. Food & Machinery, 2020, 36(10): 125-129. | 16 | 张明, 王腾, 李鹏, 等 . 基于区域亮度自适应校正算法的脐橙表面缺陷检测[J]. 中国农业科学, 2020, 53(12): 2360-2370. | 16 | ZHANG M , WANG T , LI P , et al . Surface defect detection of navel orange based on region adaptive brightness correction algorithm[J]. Scientia Agricultura Sinica, 2020, 53(12): 2360-2370. | 17 | BHARGAVA A , BANSAL A . Quality evaluation of Mono & bi-Colored apples with computer vision and multispectral imaging[J]. Multimedia Tools and Applications, 2020, 79(11): 7857-7874. | 18 | FAN S , LI J , ZHANG Y , et al . On line detection of defective apples using computer vision system combined with deep learning methods[J]. Journal of Food Engineering, 2020, 286: ID 110102. | <
|