Smart Agriculture ›› 2021, Vol. 3 ›› Issue (4): 14-28.doi: 10.12133/j.smartag.2021.3.4.202106-SA011
• Topic--Agricultural Products Processing and Testing • Previous Articles Next Articles
GUO Zhiming1,2(), WANG Junyi1, SONG Ye3, ZOU Xiaobo1,2, CAI Jianrong1
Received:
2021-06-30
Revised:
2021-07-13
Online:
2021-12-30
Published:
2021-12-30
corresponding author:
GUO Zhiming
E-mail:guozhiming@ujs.edu.cn
CLC Number:
GUO Zhiming, WANG Junyi, SONG Ye, ZOU Xiaobo, CAI Jianrong. Research Progress of Sensing Detection and Monitoring Technology for Fruit and Vegetable Quality Control[J]. Smart Agriculture, 2021, 3(4): 14-28.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2021.3.4.202106-SA011
1 | 联合国粮农组织启动联合国 . 2021国际果蔬年[EB/OL][2021-06-30]. . |
2 | 邹攀, 白雪, 陈秋生, 等 . 无损检测技术在果蔬品质评价中应用的研究进展[J]. 安徽农业科学, 2021, 49(2): 1-4. |
ZOU P, BAI X, CHEN Q, et al, Research progress on the application of non-destructive testing technology in fruits and vegetables quality evaluation[J]. Journal of Anhui Agricultural Sciences, 2021, 49(2): 1-4. | |
3 | 刘妍, 周新奇, 俞晓峰, 等 . 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 27-37. |
LIU Y , ZHOU X , YU X , et al . Research progress of nondestructive testing techniques for fruit and vegetable quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 27-37. | |
4 | 苑进 . 选择性收获机器人技术研究进展与分析[J]. 农业机械学报, 2020, 51(9): 1-17. |
YUAN J . Research progress analysis of robotics selective harvesting technologies[J]. Transactions of the CSAM, 2020, 51(9): 1-17. | |
5 | 韩志辉 . 基于产业价值角度的蔬菜品牌提升之道[J]. 蔬菜, 2017(11): 1-6. |
HAN Z . The way to improve vegetable brand based on the perspective of industrial value[J]. Vegetables, 2017(11): 1-6. | |
6 | 张雯丽 . “一带一路”战略下我国农业对外合作选择[J]. 农村工作通讯, 2017(5): 52. |
ZHANG W . Agricultural foreign cooperation options of country under the "One Belt One Road" strategy[J]. Rural Work Newsletter, 2017(5): 52. | |
7 | 王顺, 黄星奕, 吕日琴, 等 . 水果品质无损检测方法研究进展[J]. 食品与发酵工业, 2018, 44(11): 319-324. |
WANG S , HUANG X , LYU R , et al . Research progress of nondestructive detection methods in fruit quality[J]. Food and Fermentation Industries, 2018, 44(11): 319-324. | |
8 | 穆渴心, 蔡俊, 刘枣, 等 . 现代无损检测技术在农产品真菌与真菌毒素侵染中的应用[J]. 中国粮油学报, 2021, 36(8): 123-128. |
MU K , CAI J , LIU Z , et al . Modern non-destructive detection of fungal and mycotoxin infection in agricultural products[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(8): 123-128. | |
9 | 卢军党, 刘东琴, 田智辉 . 机器视觉技术在核桃分级检测中的应用[J]. 农产品加工, 2020(20): 106-107. |
LU J , LIU D , TIAN Z . Application of machine vision technology in walnut grading detection[J]. Agricultural Products Processing, 2020(20): 106-107. | |
10 | 陈涛 . 计算机视觉技术在农产品品质检测中的应用[J]. 安徽农学通报, 2019, 25(20): 110-113. |
CHEN T . The application of computer vision technology for food quality inspection of agricultural products[J]. Anhui Agricultural Science Bulletin, 2019, 25(20): 110-113. | |
11 | COSTA A Z DA , FIGUEROA H E H , FRACAROLLI J A . Computer vision based detection of external defects on tomatoes using deep learning[J]. Biosystems Engineering, 2020, 190: 131-144. |
12 | SU Q , NAOSHI K , LI M , et al . Potato quality grading based on machine vision and 3D shape analysis[J]. Computers and Electronics in Agriculture, 2018, 152: 261-268. |
13 | XIE W , WANG F , YANG D . Research on carrot surface defect detection methods based on machine vision[J]. IFAC-PapersOnLine, 2019, 52(30): 24-29. |
14 | 谢为俊, 魏硕, 王凤贺, 等 . 基于机器视觉的胡萝卜表面缺陷识别方法研究[J]. 农业机械学报, 2020, 51(S1): 450-456. |
XIE W , WEI S , WANG F , et al . Machine vision based defect method of carrot external defects[J]. Transactions of the CSAM, 2020, 51(S1): 450-456. | |
15 | 高辉, 马国峰, 刘伟杰 . 基于机器视觉的苹果缺陷快速检测方法研究[J]. 食品与机械, 2020, 36(10): 125-129. |
GAO H , MA G , LIU W . Research on a rapid detection of apple defects based on mechanical vision[J]. Food & Machinery, 2020, 36(10): 125-129. | |
16 | 张明, 王腾, 李鹏, 等 . 基于区域亮度自适应校正算法的脐橙表面缺陷检测[J]. 中国农业科学, 2020, 53(12): 2360-2370. |
ZHANG M , WANG T , LI P , et al . Surface defect detection of navel orange based on region adaptive brightness correction algorithm[J]. Scientia Agricultura Sinica, 2020, 53(12): 2360-2370. | |
17 | BHARGAVA A , BANSAL A . Quality evaluation of Mono & bi-Colored apples with computer vision and multispectral imaging[J]. Multimedia Tools and Applications, 2020, 79(11): 7857-7874. |
18 | FAN S , LI J , ZHANG Y , et al . On line detection of defective apples using computer vision system combined with deep learning methods[J]. Journal of Food Engineering, 2020, 286: ID 110102. |
19 | 刘浩, 贺福强, 李荣隆, 等 . 基于机器视觉的马铃薯自动分级与缺陷检测系统设计[J]. 农机化研究, 2022, 44(1): 73-78. |
LIU H , HE F , LI R , et al . Design of potato automatic classification and defect detection system based on machine vision[J]. Journal of Agricultural Mechanization Research, 2022, 44(1): 73-78 | |
20 | 王俊, 崔绍庆, 陈新伟, 等 . 电子鼻传感技术与应用研究进展[J]. 农业机械学报, 2013, 44(11): 160-167. |
WANG J , CUI S , CHEN X , et al . Advanced technology and new application in electronic nose[J]. Transactions of the CSAM, 2013, 44(11): 160-167. | |
21 | 黄星奕, 孙兆燕, 田潇瑜, 等 . 基于电子鼻技术的马铃薯真菌性腐烂病早期检测[J]. 食品工业科技, 2018, 39(24): 97-101. |
HUANG X , SUN Z , TIAN X , et al . Early detection of potato rot disease caused by fungal based on electronic nose technology[J]. Science and Technology of Food Industry, 2018, 39(24): 97-101. | |
22 | CONCINA I , FALASCONI M , GOBBI E , et al . Early detection of microbial contamination in processed tomatoes by electronic nose[J]. Food Control, 2009, 20(10): 873-880. |
23 | 丁庆行, 赵东杰, 刘军, 等 . 一种仓储环境水果腐烂监测的电子鼻系统[J]. 电子器件, 2019, 42(3): 781-787. |
DING Q , ZHAO D , LIU J , et al . An electronic nose system for monitoring stored fruits decay[J]. Electronic Devices, 2019, 42(3): 781-787. | |
24 | 朱丹实, 任晓俊, 魏立威, 等 . 华富苹果常温贮藏过程中感官品质及挥发性风味物质变化[J]. 食品工业科技, 2019, 40(20): 278-284. |
ZHU D , REN X , WEI L , et al . Changes of sensory quality and volatile compounds of Huafu apple preserved at room temperature[J]. Science and Technology of Food Industry, 2019, 40(20): 278-284. | |
25 | 张建超, 张鹏, 薛友林, 等 . 基于电子鼻表征霉心病苹果特征气味及无损检测模型建立[J/OL]. 食品与发酵工业: 1-10. [2021-06-28]. . |
ZHANG J , ZHANG P , XUE Y , et al . Characterization of the characteristic odor and establishment of nondestructive detection model of core rot apple based on electronic nose[J/OL]. Food and fermentation industry: 1-10. [2021-06-28]. . | |
26 | 杨晨昱, 袁鸿飞, 马惠玲, 等 . 基于FT-NIR和电子鼻技术的苹果霉心病无损检测[J/OL]. 食品与发酵工业: 1-8. [2021-06-28]. . |
YANG C , YUAN H , MA H , et al . Non-destructive detection of apple moldy core based on FT-NIR and electronic nose technology[J/OL]. Food and Fermentation Industry: 1-8. [2021-06-28]. . | |
27 | GUO Z , GUO C , CHEN Q , et al . Classification for Penicillium expansum spoilage and defect in apples by electronic nose combined with chemometrics[J]. Sensors, 2020, 20(7): ID 2130. |
28 | 赵策, 马飒飒, 张磊, 等 . 基于电子鼻技术的皇冠梨腐败等级分类研究[J]. 食品工业科技, 2020, 41(3): 246-250. |
ZHAO C , MA S , ZHANG L , et al . Research on classification of rotten grades of Huangguan pears on electronic nose technology[J]. Food Industry Science and Technology, 2020, 41(3): 246-250. | |
29 | 马蒙蒙, 程晨霞, 杨绍兰, 等 . 富士系不同品种苹果货架期间品质特性分析[J]. 青岛农业大学学报(自然科学版), 2020, 37(2): 84-90. |
MA M , CHENG C , YANG S , et al . Analysis of the fruit shelf life quality of different 'Fuji' apple cultivars[J]. Journal of Qingdao Agricultural University (Natural Science Edition), 2020, 37(2): 84-90. | |
30 | HAO W , YU G . A machine learning method for the detection of brown core in the Chinese pear variety Huangguan using a MOS-based e-nose[J]. Sensors, 20(16): ID 4499. |
31 | YANG X , CHEN J , JIA L , et al . Rapid and non-destructive detection of compression damage of yellow peach using an electronic nose and chemometrics[J]. Sensors, 2020, 20(7): ID 1866. |
32 | NOURI B , MOHTASEBI S , RAFIEE S . Quality detection of pomegranate fruit infected with fungal disease[J]. International Journal of Food Properties, 2020, 23(1): 9-21. |
33 | JIA W , LIANG G , TIANH, et al . Electronic nose-based technique for rapid detection and recognition of moldy apples[J]. Sensors, 2019, 19(7): ID 1526. |
34 | 钱丽丽, 于果, 迟晓星, 等 . 农产品产地溯源技术研究进展[J]. 食品工业, 2018, 39(1): 246-249. |
QIAN L , YU G , CHI X , et al . Research progress of origin traceability of agricultural products[J]. Food Industry, 2018, 39(1): 246-249. | |
35 | 刘洋, 贾文珅, 马洁, 等 . 电子鼻技术在肉与肉制品检测中的研究进展和应用展望[J/OL]. 智慧农业(中英文): 1-13. [2021-06-28]. . |
LIU Y , JIA W , MA J , et al . Research progress and application prospect of electronic nose technology in meat and meat products detection[J/OL]. Smart Agriculture: 1-13. [2021-06-28]. . | |
36 | 刘燕德, 程梦杰, 郝勇 . 光谱诊断技术及其在农产品质量检测中的应用[J]. 华东交通大学学报, 2018, 35(4): 1-7. |
LIU Y , CHENG M , HAO Y . Application of spectral diagnoses technology in determination of agricultural products quality[J]. Journal of East China Jiaotong University, 2018, 35(4): 1-7. | |
37 | 胡逸磊, 姜洪喆, 周宏平, 等 . 水果成熟度近红外光谱及高光谱成像无损检测研究进展[J]. 食品工业科技, 2021, 42(20): 377-383. |
HU Y , JIANG H , ZHOU H , et al . Application of near-infrared spectroscopy and hyperspectral imaging technology to detect fruit maturity: A review[J]. Food Industry Science and Technology, 2021, 42(20): 377-383. | |
38 | 马佳佳, 王克强 . 水果品质光学无损检测技术研究进展[J]. 食品工业科技, 2021, 42(23): 427-437. |
MA J , WANG K . Research progress in optical nondestructive testing technology for fruit quality[J]. Food Industry Science and Technology, 2021, 42(23): 427-437. | |
39 | 王梓萌, 刘景艳, 姚腾飞, 等 . 基于近红外光谱技术的苹果霉心病检测方法[J]. 科学技术与工程, 2019, 19(10): 150-154. |
WANG Z , LIU J , YAO T , et al . Detection method of moldy core in apple fruit based on near infrared spectroscopy[J]. Science Technology and Engineering, 2019, 19(10): 150-154. | |
40 | XING J , BRAVO C , MOSHOU D , et al . Bruise detection on 'Golden Delicious' apples by vis/NIR spectroscopy[J]. Computers and Electronics in Agriculture, 2006, 52(1-2): 11-20. |
41 | 孟庆龙, 张艳, 尚静 . 基于高光谱成像技术无损检测苹果表面缺陷[J]. 食品工业, 2019, 40(3): 131-134. |
MENG Q , ZHANG Y , SHANG J . Nondestructive detection of defect on apples using hyperspectral imaging technology[J]. Food Industry, 2019, 40(3): 131-134. | |
42 | 刘燕德, 吴明明, 孙旭东, 等 . 黄桃表面缺陷和可溶性固形物光谱同时在线检测[J]. 农业工程学报, 2016, 32(6): 289-295. |
LIU Y , WU M , SUN X , et al . Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible-near infrared transmittance spectroscopy[J]. Transactions of the CSAE, 2016, 32(6): 289-295. | |
43 | TIAN S , ZHANG M , LI B , et al . Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core[J]. Infrared Physics & Technology, 2020, 111: ID 103510. |
44 | PÉREZ-MARÍND, CALERO L , FEARN T , et al . A system using in situ NIRS sensors for the detection of product failing to meet quality standards and the prediction of optimal postharvest shelf-life in the case of oranges kept in cold storage[J]. Postharvest Biology & Technology, 2019, 147: 48-53. |
45 | JLAB C , RZ A , JL A , et al . Detection of early decayed oranges based on multispectral principal component image combining both bi-dimensional empirical mode decomposition and watershed segmentation method[J]. Postharvest Biology and Technology, 158: ID 110986. |
46 | GUO Z , WANG M , AGYEKUM A , et al . Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy[J]. Journal of Food Engineering, 2020, 279: ID 109955. |
47 | 韩亚芬, 吕程序, 苑严伟, 等 . PLS-DA优化模型的马铃薯黑心病可见近红外透射光谱检测[J]. 光谱学与光谱分析, 2021, 41(4): 1213-1219. |
HAN Y , LYU C , YUAN Y , et al . PLS-discriminant analysis on potato blackheart disease based on VIS-NIR transmission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1213-1219. | |
48 | NISHINO M , KUROKI S , DEGUCHI Y , et al . Dual-beam spectral measurement improves accuracy of nondestructive identification of internal rot in onion bulbs[J]. Postharvest Biology and Technology, 2019, 156: ID 110935. |
49 | IMANIAN K , POURDARBANI R , SABZI S , et al . Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques[J]. Foods, 2021, 10(5): ID 982. |
50 | HAN Y , LU C , YUAN Y , et al . PLS-discriminant analysis on potato blackheart disease based on VIS-NIR transmission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1213-1219. |
51 | 郭志明, 郭闯, 王明明, 等 . 果蔬品质安全近红外光谱无损检测研究进展[J]. 食品安全质量检测学报, 2019, 10(24): 8280-8288. |
GUO Z , GUO C , WANG M , et al . Research advances in nondestructive detection of fruit and vegetable quality and safety by near infrared spectroscopy[J]. Journal of Food Safety Quality Inspection, 2019, 10(24): 8280-8288. | |
52 | 何馥娴, 蒙庆华, 唐柳, 等 . 高光谱成像技术在水果品质检测中的研究进展[J]. 果树学报, 2021, 38(9): 1590-1599. |
HE F , MENG Q , TANG L , et al . Research progress of hyperspectral imaging in fruit quality detection[J]. Journal of Fruit Science, 2021, 38(9): 1590-1599. | |
53 | 黄文倩, 陈立平, 李江波, 等 . 基于高光谱成像的苹果轻微损伤检测有效波长选取[J]. 农业工程学报, 2013, 29(1): 272-277. |
HUANG W , CHEN L , LI J , et al . Effective wavelengths determination for detection of slight bruises on apples based on hyperspectral imaging[J]. Transactions of the CSAE, 2013, 29(1): 272-277. | |
54 | 沈宇, 房胜, 王风云, 等 . 基于高光谱成像技术识别苹果轻微损伤的有效波段研究[J]. 中国农业科技导报, 2020, 22(3): 64-71. |
SHEN Y , FANG S , WANG F , et al . Effective wavelengths study on the identification of slight bruises of apples based on hyperspectral imaging[J]. Journal of Agricultural Science and Technology, 2020, 22(3): 64-71. | |
55 | BARANOWSKI P , MAZUREK W , WOZNIAK J , et al . Detection of early bruises in apples using hyperspectral data and thermal imaging[J]. Journal of Food Engineering, 2012, 110(3): 345-355. |
56 | PARK S H , HONG Y , SHUAIBU M , et al . Detection of apple marssonina blotch with PLSR, PCA, and LDA using outdoor hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 319-324. |
57 | 董建伟, 刘媛媛, 陈斐, 等 . 基于多光谱图像的库尔勒香梨表面缺陷检测[J]. 农机化研究, 2021, 43(9): 35-40. |
DONG J , LIU Y , CHEN F , et al . Surface defect detection of Korla pear based on multi-spectral image[J]. Journal of Agricultural Mechanization Research, 2021, 43(9): 35-40. | |
58 | PAN T , CHYNGYZ E , SUN D , et al . Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging[J]. Postharvest Biology and Technology, 2019, 154: 96-104. |
59 | 吴姝, 王琨, 王超 . 基于光谱特性分析的冬枣渐变损伤研究[J]. 安徽农业科学, 2020, 48(24): 191-194. |
WU S , WANG K , WANG C . Study on the development of bruises on winter jujube based on spectrum characteristics analysis[J]. Journal of Anhui Agricultural Sciences, 2020, 48(24): 191-194. | |
60 | 武锦龙, 苗荣慧, 黄锋华, 等 . 高光谱图像与卷积神经网络相结合的油桃轻微损伤检测[J]. 山西农业大学学报(自然科学版), 2019, 39(2): 79-85. |
WU J , MIAO R , HUANG F , et al . Utilization of hyper-spectral image coupled withconvolutional neural networkon nectarine slight bruises detection[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(2): 79-85. | |
61 | HUANG Y , WANG D , LIU Y , et al . Measurement of early disease blueberries based on Vis/NIR hyperspectral imaging system[J]. Sensors, 2020, 20(20): ID 5783. |
62 | PHAM Q T , LIOU N S . Hyperspectral imaging system with rotation platform for investigation of jujube skin defects[J]. Applied Sciences-basel, 2020, 10(8): ID 2851. |
63 | 赵明富, 刘自迪, 邹雪, 等 . 基于高光谱成像技术对马铃薯外部缺陷的识别[J]. 激光杂志, 2016, 37(3): 20-24. |
ZHAO M , LIU Z , ZOU X , et al . Detection of defects on potatoes by hyperspectral imaging technology[J]. Laser Journal, 2016, 37(3): 20-24. | |
64 | 王金灿 . 果蔬农药残留快检的方法与应用[J]. 食品安全导刊, 2018(36): 69-70. |
WANG J . Methods and application of quick inspection of pesticide residues in fruits and vegetables[J]. Food Safety Guide, 2018(36): 69-70. | |
65 | 王春和 . 拉曼光谱技术在农产品质量安全检测中的应用[J]. 农业开发与装备, 2019(3): 79. |
WANG C . The application of Raman spectroscopy in the quality and safety inspection of agricultural products[J]. Agricultural Development and Equipment, 2019(3): 79. | |
66 | 韩宇, 朱莉娅, 陈文, 等 . 基于表面增强拉曼散射检测果蔬中农药残留的方法研究[J]. 食品工业科技, 2017, 38(19): 337-341. |
HAN Y , ZHU L , CHEN W , et al . Study on the methods of detection of pesticides residue in fruits and vegetables based on surface enhanced Raman scattering[J]. Food Industry Science and Technology, 2017, 38(19): 337-341. | |
67 | 傅霞萍, 应义斌 . 基于NIR和Raman光谱的果蔬质量检测研究进展与展望[J]. 农业机械学报, 2013, 44(8): 148-164. |
FU X , YING Y . Application of NIR and Raman spectroscopy for quality and safety inspection of fruit and vegetables: A review[J]. Transactions of the CSAM, 2013, 44(8): 148-164. | |
68 | 陈思雨, 张舒慧, 张纾, 等 . 基于共聚焦拉曼光谱技术的苹果轻微损伤早期判别分析[J].光谱学与光谱分析, 2018, 38(2): 430-435. |
CHEN S , ZHANG S , ZHANG S , et al . Detection of early tiny bruises in apples using confocal raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 430-435. | |
69 | 刘燕德, 肖怀春, 孙旭东, 等 . 基于共焦显微拉曼的柑橘黄龙病无损检测研究[J]. 光谱学与光谱分析, 2018, 38(1): 111-116. |
LIU Y , XIAO H , SUN X , et al . Researching of non-destructive detection for citrus greening based on confocal Micro-Raman[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 111-116. | |
70 | 代芬, 邱泽源, 邱倩, 等 . 基于拉曼光谱和自荧光光谱的柑橘黄龙病快速检测方法[J]. 智慧农业, 2019, 1(3): 77-86. |
DAI F , QIU Z , QIU Q , et al . Rapid detection of citrus Huanglongbing using Raman spectroscopy and auto-fluorescence spectroscopy[J]. Smart Agriculture, 2019, 1(3): 77-86. | |
71 | SANCHEZ L , PANT S , IREY M , et al . Detection and identification of canker and blight on orange trees using a hand-held Raman spectrometer[J]. Journal of Raman Spectroscopy, 2019, 50(12): 1875-1880. |
72 | LIN Y , LIN H , LIN Y . Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan[J]. PLoS ONE, 2020, 15(3): ID e0230330. |
73 | GUO Z , WANG M , BARIMAH A O , et al . Label-free surface enhanced Raman scattering spectroscopy for discrimination and detection of dominant apple spoilage fungus[J]. International Journal of Food Microbiology, 2020, 338: ID 108990. |
74 | 刘燕德, 靳昙昙 . 拉曼光谱技术在农产品质量安全检测中的应用[J]. 光谱学与光谱分析, 2015, 35(9): 2567-2572. |
LIU Y , JIN T . Application of Raman spectroscopy technique to agricultural products quality and safety determination[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2567-2572. | |
75 | 徐赛, 陆华忠, 丘广俊, 等 . 水果品质无损检测研究进展及应用现状[J]. 广东农业科学, 2020, 47(12): 229-236. |
XU S , LU H , QIU G , et al . Research progress and application status of fruit quality nondestructive detection technology[J]. Guangdong Agricultural Sciences, 2020, 47(12): 229-236. | |
76 | SOOD S , SINGH H . Computer vision and machine learning based approaches for food security: A review[J]. Multimedia Tools and Applications, 2021(3): 1-27. |
77 | 窦文卿, 柴春祥, 鲁晓翔 . 无损检测技术在水果品质评价中应用的研究进展[J]. 食品工业科技, 2020, 41(24): 354-359. |
DOU W , CHAI C , LU X . Research progress of non-destructive detection technique in fruit quality evaluation[J]. Science and Technology of Food Industry, 2020, 41(24): 354-359. | |
78 | 冯建英, 李鑫, 原变鱼, 等 . 智能感官技术在水果检测中的应用进展及趋势[J]. 南方农业学报, 2020, 51(3): 636-644. |
FENG J , LI X , YUAN B , et al . Progress and trend of fruit detection by intelligent sensory technology[J]. Southern Journal of Agricultural Sciences, 2020, 51(3): 636-644. | |
79 | CHEN H , QIAO H , FENG Q , et al . Rapid detection of pomelo fruit quality using near-infrared hyperspectral imaging combined with chemometric methods[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: ID 616943. |
80 | 任二芳, 牛德宝, 温立香, 等 . 电子鼻和电子舌在水果检测中的应用进展[J]. 食品工业, 2019, 40(10): 261-264. |
REN E , NIU D , WEN L , et al . Application research progress of electronic nose and electronic tongue in fruits detection[J]. Food Industry, 2019, 40(10): 261-264. | |
81 | 袁瑞瑞, 刘贵珊, 何建国, 等 . 可见近红外高光谱成像对灵武长枣定量损伤等级判别[J].光谱学与光谱分析, 2021, 41(4): 1182-1187. |
YUAN R , LIU G , HE J , et al . Quantitative damage identification of Lingwu long jujube based on visible near-infrared hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1182-1187. | |
82 | YUAN R , LIU G , HE J , et al . Classification of Lingwu long jujube internal bruise over time based on visible near-infrared hyperspectral imaging combined with partial least squares-discriminant analysis[J]. Computers and Electronics in Agriculture, 2021, 182: ID 106043. |
83 | HUANG X , YU S , XU H , et al . Rapid and nondestructive detection of freshness quality of postharvest spinaches based on machine vision and electronic nose[J]. Journal of Food Safety, 2019, 39(6): ID e12708. |
84 | 徐海霞 . 基于机器视觉和电子鼻技术的菠菜新鲜度无损检测研究[D]. 镇江: 江苏大学, 2016. |
XU H . Research on non-destructive testing of spinach freshness based on machine vision and electronic nose technology[D]. Zhenjiang: Jiangsu University, 2016. | |
85 | 陈乾辉, 吴德刚 . 基于可见光—红外光图像融合的苹果缺陷检测算法[J]. 食品与机械, 2018, 34(9): 135-138. |
CHEN Q , WU D . Algorithm on apple defect detection based on visible light-infrared light image fusion[J]. Food & Machinery, 2018, 34(9): 135-138. | |
86 | LIU Q , SUN K , ZHAO N , et al . Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay[J]. Postharvest Biology and Technology, 2019, 153: 152-160. |
87 | 郭守斌, 魏域斌, 魏玉杰 . 对我国智慧农业发展的思考与建议[J]. 农业科技与信息, 2021(9): 72-75. |
GUO S , WEI Y , WEI Y . Thoughts and suggestions on the development of smart agriculture in China[J]. Agricultural Science and Information, 2021(9): 72-75. | |
88 | 史亮, 张复宏, 刘文军 . 物联网+区块链助力食品质量安全保障[J]. 农业与技术, 2019, 3 9(10): 34-36. |
SHI L , ZHANG F , LIU W . The Internet of Things blockchain helps ensure food quality and safety[J]. Agriculture & Technology, 2019, 3 9(10): 34-36. | |
89 | 笪海波 . 智能监控物联网管理在果蔬种植中的应用[J]. 现代农业科技, 2018(20): 99-101. |
LA H . Application of intelligent monitoring internet of things management in fruit and vegetable planting[J]. Modern Agricultural Science and Technology, 2018(20): 99-101. | |
90 | 郭凌, 刘刚 . 基于无线传感器网络的果蔬冷库监控系统设计[J]. 物流工程与管理, 2018, 40(2): 104-105. |
GUO L , LIU G . Design of fruit and vegetable preservation monitoring system based on wireless sensor network[J]. Logistics Engineering and Management, 2018, 40(2): 104-105 | |
91 | 王众, 梁早清, 郑业鲁, 等 . 语义网技术与区块链技术的交集在农产品质量安全追溯领域的应用[J]. 农业图书情报, 2019, 31(1): 60-68. |
WANG Z , LIANG Z , ZHENG Y , et al . Applying the integrated technologies of the semantic web and the blockchain to the agro-products tracing system[J]. Agricultural Library and Information, 2019, 31(1): 60-68. |
[1] | LIU Yang, JIA Wenshen, MA Jie, LIANG Gang, WANG Huihua, ZHOU Wei. Research Progress and Application Prospect of Electronic Nose Technology in the Detection of Meat and Meat Products [J]. Smart Agriculture, 2021, 3(4): 29-41. |
[2] | ZHANG Sha, LIU Muhua, CHEN Jinyin, ZHAO Jinhui. Rapid Detection of Imazalil Residues in Navel Orange Peel Using Surface-Enhanced Raman Spectroscopy [J]. Smart Agriculture, 2021, 3(4): 42-52. |
[3] | XU Lihong, LIU Huihui, XU He, WEI Ruihua, CAI Wentao. Multi-Factor Coordination Control Technology of Promoting Early Maturing in Southern Blueberry Intelligent Greenhouse [J]. Smart Agriculture, 2021, 3(4): 86-98. |
[4] | YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan. Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing [J]. Smart Agriculture, 2021, 3(2): 35-44. |
[5] | HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin. Design and Prospect for Anti-theft and Anti-destruction of Nodes in Solar Insecticidal Lamps Internet of Things [J]. Smart Agriculture, 2021, 3(1): 129-143. |
[6] | CHEN Xuegeng, WEN Haojun, ZHANG Weirong, PAN Fochu, ZHAO Yan. Advances and Progress of Agricultural Machinery and Sensing Technology Fusion [J]. Smart Agriculture, 2020, 2(4): 1-16. |
[7] | HAN Shuqing, ZHANG Jing, CHENG Guodong, PENG Yingqi, ZHANG Jianhua, WU Jianzhai. Current State and Challenges of Automatic Lameness Detection in Dairy Cattle [J]. Smart Agriculture, 2020, 2(3): 21-36. |
[8] | LIU Tianlin, ZHU Xicun, BAI Xueyuan, PENG Yufeng, LI Meixuan, TIAN Zhongyu, JIANG Yuanmao, YANG Guijun. Hyperspectral Estimation Model Construction and Accuracy Comparison of Soil Organic Matter Content [J]. Smart Agriculture, 2020, 2(3): 129-138. |
[9] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[10] | SUN Haoran, SUN Lin, BI Chunguang, YU Helong. Hybrid Multi-Hop Routing Algorithm for Farmland IoT based on Particle Swarm and Simulated Annealing Collaborative Optimization Method [J]. Smart Agriculture, 2020, 2(3): 98-107. |
[11] | HONG Wei, XU Baohua, LIU Shengping. Design and Experimental Research of Long-Term Monitoring System for Bee Colony Multiple Features [J]. Smart Agriculture, 2020, 2(2): 105-114. |
[12] | YANG XuanJiang, LI Hualong, LI Miao, HU Zelin, LIAO Jianjun, LIU Xianwang, GUO Panpan, YUE Xudong. Beehive Key Parameters Online Monitoring System and Performance Test [J]. Smart Agriculture, 2020, 2(2): 115-125. |
[13] | YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng. Characteristics Analysis and Challenges for Fault Diagnosis in Solar Insecticidal Lamps Internet of Things [J]. Smart Agriculture, 2020, 2(2): 11-27. |
[14] | Yang Chenghai. Airborne remote sensing systems for precision agriculture applications [J]. Smart Agriculture, 2020, 2(1): 1-22. |
[15] | Fu Yuanyuan, Yang Guijun, Duan Dandan, Zhang Yongtao, Gu Xiaohe, Yang Xiaodong, Xu Xingang, Li Zhenhai. Comparison analysis of spatial and spectral feature in vegetation classification based on AVIRIS hyperspectral image [J]. Smart Agriculture, 2020, 2(1): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||