1 | 联合国粮农组织启动联合国 . 2021国际果蔬年[EB/OL][2021-06-30]. . | 2 | 邹攀, 白雪, 陈秋生, 等 . 无损检测技术在果蔬品质评价中应用的研究进展[J]. 安徽农业科学, 2021, 49(2): 1-4. | 2 | ZOU P, BAI X, CHEN Q, et al, Research progress on the application of non-destructive testing technology in fruits and vegetables quality evaluation[J]. Journal of Anhui Agricultural Sciences, 2021, 49(2): 1-4. | 3 | 刘妍, 周新奇, 俞晓峰, 等 . 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 27-37. | 3 | LIU Y , ZHOU X , YU X , et al . Research progress of nondestructive testing techniques for fruit and vegetable quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 27-37. | 4 | 苑进 . 选择性收获机器人技术研究进展与分析[J]. 农业机械学报, 2020, 51(9): 1-17. | 4 | YUAN J . Research progress analysis of robotics selective harvesting technologies[J]. Transactions of the CSAM, 2020, 51(9): 1-17. | 5 | 韩志辉 . 基于产业价值角度的蔬菜品牌提升之道[J]. 蔬菜, 2017(11): 1-6. | 5 | HAN Z . The way to improve vegetable brand based on the perspective of industrial value[J]. Vegetables, 2017(11): 1-6. | 6 | 张雯丽 . “一带一路”战略下我国农业对外合作选择[J]. 农村工作通讯, 2017(5): 52. | 6 | ZHANG W . Agricultural foreign cooperation options of country under the "One Belt One Road" strategy[J]. Rural Work Newsletter, 2017(5): 52. | 7 | 王顺, 黄星奕, 吕日琴, 等 . 水果品质无损检测方法研究进展[J]. 食品与发酵工业, 2018, 44(11): 319-324. | 7 | WANG S , HUANG X , LYU R , et al . Research progress of nondestructive detection methods in fruit quality[J]. Food and Fermentation Industries, 2018, 44(11): 319-324. | 8 | 穆渴心, 蔡俊, 刘枣, 等 . 现代无损检测技术在农产品真菌与真菌毒素侵染中的应用[J]. 中国粮油学报, 2021, 36(8): 123-128. | 8 | MU K , CAI J , LIU Z , et al . Modern non-destructive detection of fungal and mycotoxin infection in agricultural products[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(8): 123-128. | 9 | 卢军党, 刘东琴, 田智辉 . 机器视觉技术在核桃分级检测中的应用[J]. 农产品加工, 2020(20): 106-107. | 9 | LU J , LIU D , TIAN Z . Application of machine vision technology in walnut grading detection[J]. Agricultural Products Processing, 2020(20): 106-107. | 10 | 陈涛 . 计算机视觉技术在农产品品质检测中的应用[J]. 安徽农学通报, 2019, 25(20): 110-113. | 10 | CHEN T . The application of computer vision technology for food quality inspection of agricultural products[J]. Anhui Agricultural Science Bulletin, 2019, 25(20): 110-113. | 11 | COSTA A Z DA , FIGUEROA H E H , FRACAROLLI J A . Computer vision based detection of external defects on tomatoes using deep learning[J]. Biosystems Engineering, 2020, 190: 131-144. | 12 | SU Q , NAOSHI K , LI M , et al . Potato quality grading based on machine vision and 3D shape analysis[J]. Computers and Electronics in Agriculture, 2018, 152: 261-268. | 13 | XIE W , WANG F , YANG D . Research on carrot surface defect detection methods based on machine vision[J]. IFAC-PapersOnLine, 2019, 52(30): 24-29. | 14 | 谢为俊, 魏硕, 王凤贺, 等 . 基于机器视觉的胡萝卜表面缺陷识别方法研究[J]. 农业机械学报, 2020, 51(S1): 450-456. | 14 | XIE W , WEI S , WANG F , et al . Machine vision based defect method of carrot external defects[J]. Transactions of the CSAM, 2020, 51(S1): 450-456. | 15 | 高辉, 马国峰, 刘伟杰 . 基于机器视觉的苹果缺陷快速检测方法研究[J]. 食品与机械, 2020, 36(10): 125-129. | 15 | GAO H , MA G , LIU W . Research on a rapid detection of apple defects based on mechanical vision[J]. Food & Machinery, 2020, 36(10): 125-129. | 16 | 张明, 王腾, 李鹏, 等 . 基于区域亮度自适应校正算法的脐橙表面缺陷检测[J]. 中国农业科学, 2020, 53(12): 2360-2370. | 16 | ZHANG M , WANG T , LI P , et al . Surface defect detection of navel orange based on region adaptive brightness correction algorithm[J]. Scientia Agricultura Sinica, 2020, 53(12): 2360-2370. | 17 | BHARGAVA A , BANSAL A . Quality evaluation of Mono & bi-Colored apples with computer vision and multispectral imaging[J]. Multimedia Tools and Applications, 2020, 79(11): 7857-7874. | 18 | FAN S , LI J , ZHANG Y , et al . On line detection of defective apples using computer vision system combined with deep learning methods[J]. Journal of Food Engineering, 2020, 286: ID 110102. | 19 | 刘浩, 贺福强, 李荣隆, 等 . 基于机器视觉的马铃薯自动分级与缺陷检测系统设计[J]. 农机化研究, 2022, 44(1): 73-78. | 19 | LIU H , HE F , LI R , et al . Design of potato automatic classification and defect detection system based on machine vision[J]. Journal of Agricultural Mechanization Research, 2022, 44(1): 73-78 | 20 | 王俊, 崔绍庆, 陈新伟, 等 . 电子鼻传感技术与应用研究进展[J]. 农业机械学报, 2013, 44(11): 160-167. | 20 | WANG J , CUI S , CHEN X , et al . Advanced technology and new application in electronic nose[J]. Transactions of the CSAM, 2013, 44(11): 160-167. | 21 | 黄星奕, 孙兆燕, 田潇瑜, 等 . 基于电子鼻技术的马铃薯真菌性腐烂病早期检测[J]. 食品工业科技, 2018, 39(24): 97-101. | 21 | HUANG X , SUN Z , TIAN X , et al . Early detection of potato rot disease caused by fungal based on electronic nose technology[J]. Science and Technology of Food Industry, 2018, 39(24): 97-101. | 22 | CONCINA I , FALASCONI M , GOBBI E , et al . Early detection of microbial contamination in processed tomatoes by electronic nose[J]. Food Control, 2009, 20(10): 873-880. | 23 | 丁庆行, 赵东杰, 刘军, 等 . 一种仓储环境水果腐烂监测的电子鼻系统[J]. 电子器件, 2019, 42(3): 781-787. | 23 | DING Q , ZHAO D , LIU J , et al . An electronic nose system for monitoring stored fruits decay[J]. Electronic Devices, 2019, 42(3): 781-787. | 24 | 朱丹实, 任晓俊, 魏立威, 等 . 华富苹果常温贮藏过程中感官品质及挥发性风味物质变化[J]. 食品工业科技, 2019, 40(20): 278-284. | 24 | ZHU D , REN X , WEI L , et al . Changes of sensory quality and volatile compounds of Huafu apple preserved at room temperature[J]. Science and Technology of Food Industry, 2019, 40(20): 278-284. | 25 | 张建超, 张鹏, 薛友林, 等 . 基于电子鼻表征霉心病苹果特征气味及无损检测模型建立[J/OL]. 食品与发酵工业: 1-10. [2021-06-28]. . | 25 | ZHANG J , ZHANG P , XUE Y , et al . Characterization of the characteristic odor and establishment of nondestructive detection model of core rot apple based on electronic nose[J/OL]. Food and fermentation industry: 1-10. [2021-06-28]. . | 26 | 杨晨昱, 袁鸿飞, 马惠玲, 等 . 基于FT-NIR和电子鼻技术的苹果霉心病无损检测[J/OL]. 食品与发酵工业: 1-8. [2021-06-28]. . | 26 | YANG C , YUAN H , MA H , et al . Non-destructive detection of apple moldy core based on FT-NIR and electronic nose technology[J/OL]. Food and Fermentation Industry: 1-8. [2021-06-28]. . | 27 | GUO Z , GUO C , CHEN Q , et al . Classification for Penicillium expansum spoilage and defect in apples by electronic nose combined with chemometrics[J]. Sensors, 2020, 20(7): ID 2130. | 28 | 赵策, 马飒飒, 张磊, 等 . 基于电子鼻技术的皇冠梨腐败等级分类研究[J]. 食品工业科技, 2020, 41(3): 246-250. | 28 | ZHAO C , MA S , ZHANG L , et al . Research on classification of rotten grades of Huangguan pears on electronic nose technology[J]. Food Industry Science and Technology, 2020, 41(3): 246-250. | 29 | 马蒙蒙, 程晨霞, 杨绍兰, 等 . 富士系不同品种苹果货架期间品质特性分析[J]. 青岛农业大学学报(自然科学版), 2020, 37(2): 84-90. | 29 | MA M , CHENG C , YANG S , et al . Analysis of the fruit shelf life quality of different 'Fuji' apple cultivars[J]. Journal of Qingdao Agricultural University (Natural Science Edition), 2020, 37(2): 84-90. | 30 | HAO W , YU G . A machine learning method for the detection of brown core in the Chinese pear variety Huangguan using a MOS-based e-nose[J]. Sensors, 20(16): ID 4499. | 31 | YANG X , CHEN J , JIA L , et al . Rapid and non-destructive detection of compression damage of yellow peach using an electronic nose and chemometrics[J]. Sensors, 2020, 20(7): ID 1866. | 32 | NOURI B , MOHTASEBI S , RAFIEE S . Quality detection of pomegranate fruit infected with fungal disease[J]. International Journal of Food Properties, 2020, 23(1): 9-21. | 33 | JIA W , LIANG G , TIANH, et al . Electronic nose-based technique for rapid detection and recognition of moldy apples[J]. Sensors, 2019, 19(7): ID 1526. | 34 | 钱丽丽, 于果, 迟晓星, 等 . 农产品产地溯源技术研究进展[J]. 食品工业, 2018, 39(1): 246-249. | 34 | QIAN L , YU G , CHI X , et al . Research progress of origin traceability of agricultural products[J]. Food Industry, 2018, 39(1): 246-249. | 35 | 刘洋, 贾文珅, 马洁, 等 . 电子鼻技术在肉与肉制品检测中的研究进展和应用展望[J/OL]. 智慧农业(中英文): 1-13. [2021-06-28]. . | 35 | LIU Y , JIA W , MA J , et al . Research progress and application prospect of electronic nose technology in meat and meat products detection[J/OL]. Smart Agriculture: 1-13. [2021-06-28]. . | 36 | 刘燕德, 程梦杰, 郝勇 . 光谱诊断技术及其在农产品质量检测中的应用[J]. 华东交通大学学报, 2018, 35(4): 1-7. | 36 | LIU Y , CHENG M , HAO Y . Application of spectral diagnoses technology in determination of agricultural products quality[J]. Journal of East China Jiaotong University, 2018, 35(4): 1-7. | 37 | 胡逸磊, 姜洪喆, 周宏平, 等 . 水果成熟度近红外光谱及高光谱成像无损检测研究进展[J]. 食品工业科技, 2021, 42(20): 377-383. | 37 | HU Y , JIANG H , ZHOU H , et al . Application of near-infrared spectroscopy and hyperspectral imaging technology to detect fruit maturity: A review[J]. Food Industry Science and Technology, 2021, 42(20): 377-383. | 38 | 马佳佳, 王克强 . 水果品质光学无损检测技术研究进展[J]. 食品工业科技, 2021, 42(23): 427-437. | 38 | MA J , WANG K . Research progress in optical nondestructive testing technology for fruit quality[J]. Food Industry Science and Technology, 2021, 42(23): 427-437. | 39 | 王梓萌, 刘景艳, 姚腾飞, 等 . 基于近红外光谱技术的苹果霉心病检测方法[J]. 科学技术与工程, 2019, 19(10): 150-154. | 39 | WANG Z , LIU J , YAO T , et al . Detection method of moldy core in apple fruit based on near infrared spectroscopy[J]. Science Technology and Engineering, 2019, 19(10): 150-154. | 40 | XING J , BRAVO C , MOSHOU D , et al . Bruise detection on 'Golden Delicious' apples by vis/NIR spectroscopy[J]. Computers and Electronics in Agriculture, 2006, 52(1-2): 11-20. | 41 | 孟庆龙, 张艳, 尚静 . 基于高光谱成像技术无损检测苹果表面缺陷[J]. 食品工业, 2019, 40(3): 131-134. | 41 | MENG Q , ZHANG Y , SHANG J . Nondestructive detection of defect on apples using hyperspectral imaging technology[J]. Food Industry, 2019, 40(3): 131-134. | 42 | 刘燕德, 吴明明, 孙旭东, 等 . 黄桃表面缺陷和可溶性固形物光谱同时在线检测[J]. 农业工程学报, 2016, 32(6): 289-295. | 42 | LIU Y , WU M , SUN X , et al . Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible-near infrared transmittance spectroscopy[J]. Transactions of the CSAE, 2016, 32(6): 289-295. | 43 | TIAN S , ZHANG M , LI B , et al . Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core[J]. Infrared Physics & Technology, 2020, 111: ID 103510. | 44 | PéREZ-MARíND, CALERO L , FEARN T , et al . A system using in situ NIRS sensors for the detection of product failing to meet quality standards and the prediction of optimal postharvest shelf-life in the case of oranges kept in cold storage[J]. Postharvest Biology & Technology, 2019, 147: 48-53. | 45 | JLAB C , RZ A , JL A , et al . Detection of early decayed oranges based on multispectral principal component image combining both bi-dimensional empirical mode decomposition and watershed segmentation method[J]. Postharvest Biology and Technology, 158: ID 110986. | 46 | GUO Z , WANG M , AGYEKUM A , et al . Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy[J]. Journal of Food Engineering, 2020, 279: ID 109955. | 47 | 韩亚芬, 吕程序, 苑严伟, 等 . PLS-DA优化模型的马铃薯黑心病可见近红外透射光谱检测[J]. 光谱学与光谱分析, 2021, 41(4): 1213-1219. | 47 | HAN Y , LYU C , YUAN Y , et al . PLS-discriminant analysis on potato blackheart disease based on VIS-NIR transmission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1213-1219. | 48 | NISHINO M , KUROKI S , DEGUCHI Y , et al . Dual-beam spectral measurement improves accuracy of nondestructive identification of internal rot in onion bulbs[J]. Postharvest Biology and Technology, 2019, 156: ID 110935. | 49 | IMANIAN K , POURDARBANI R , SABZI S , et al . Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques[J]. Foods, 2021, 10(5): ID 982. | 50 | HAN Y , LU C , YUAN Y , et al . PLS-discriminant analysis on potato blackheart disease based on VIS-NIR transmission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1213-1219. | 51 | 郭志明, 郭闯, 王明明, 等 . 果蔬品质安全近红外光谱无损检测研究进展[J]. 食品安全质量检测学报, 2019, 10(24): 8280-8288. | 51 | GUO Z , GUO C , WANG M , et al . Research advances in nondestructive detection of fruit and vegetable quality and safety by near infrared spectroscopy[J]. Journal of Food Safety Quality Inspection, 2019, 10(24): 8280-8288. | 52 | 何馥娴, 蒙庆华, 唐柳, 等 . 高光谱成像技术在水果品质检测中的研究进展[J]. 果树学报, 2021, 38(9): 1590-1599. | 52 | HE F , MENG Q , TANG L , et al . Research progress of hyperspectral imaging in fruit quality detection[J]. Journal of Fruit Science, 2021, 38(9): 1590-1599. | 53 | 黄文倩, 陈立平, 李江波, 等 . 基于高光谱成像的苹果轻微损伤检测有效波长选取[J]. 农业工程学报, 2013, 29(1): 272-277. | 53 | HUANG W , CHEN L , LI J , et al . Effective wavelengths determination for detection of slight bruises on apples based on hyperspectral imaging[J]. Transactions of the CSAE, 2013, 29(1): 272-277. | 54 | 沈宇, 房胜, 王风云, 等 . 基于高光谱成像技术识别苹果轻微损伤的有效波段研究[J]. 中国农业科技导报, 2020, 22(3): 64-71. | 54 | SHEN Y , FANG S , WANG F , et al . Effective wavelengths study on the identification of slight bruises of apples based on hyperspectral imaging[J]. Journal of Agricultural Science and Technology, 2020, 22(3): 64-71. | 55 | BARANOWSKI P , MAZUREK W , WOZNIAK J , et al . Detection of early bruises in apples using hyperspectral data and thermal imaging[J]. Journal of Food Engineering, 2012, 110(3): 345-355. | 56 | PARK S H , HONG Y , SHUAIBU M , et al . Detection of apple marssonina blotch with PLSR, PCA, and LDA using outdoor hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 319-324. | 57 | 董建伟, 刘媛媛, 陈斐, 等 . 基于多光谱图像的库尔勒香梨表面缺陷检测[J]. 农机化研究, 2021, 43(9): 35-40. | 57 | DONG J , LIU Y , CHEN F , et al . Surface defect detection of Korla pear based on multi-spectral image[J]. Journal of Agricultural Mechanization Research, 2021, 43(9): 35-40. | 58 | PAN T , CHYNGYZ E , SUN D , et al . Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging[J]. Postharvest Biology and Technology, 2019, 154: 96-104. | 59 | 吴姝, 王琨, 王超 . 基于光谱特性分析的冬枣渐变损伤研究[J]. 安徽农业科学, 2020, 48(24): 191-194. | 59 | WU S , WANG K , WANG C . Study on the development of bruises on winter jujube based on spectrum characteristics analysis[J]. Journal of Anhui Agricultural Sciences, 2020, 48(24): 191-194. | 60 | 武锦龙, 苗荣慧, 黄锋华, 等 . 高光谱图像与卷积神经网络相结合的油桃轻微损伤检测[J]. 山西农业大学学报(自然科学版), 2019, 39(2): 79-85. | 60 | WU J , MIAO R , HUANG F , et al . Utilization of hyper-spectral image coupled withconvolutional neural networkon nectarine slight bruises detection[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(2): 79-85. | 61 | HUANG Y , WANG D , LIU Y , et al . Measurement of early disease blueberries based on Vis/NIR hyperspectral imaging system[J]. Sensors, 2020, 20(20): ID 5783. | 62 | PHAM Q T , LIOU N S . Hyperspectral imaging system with rotation platform for investigation of jujube skin defects[J]. Applied Sciences-basel, 2020, 10(8): ID 2851. | 63 | 赵明富, 刘自迪, 邹雪, 等 . 基于高光谱成像技术对马铃薯外部缺陷的识别[J]. 激光杂志, 2016, 37(3): 20-24. | 63 | ZHAO M , LIU Z , ZOU X , et al . Detection of defects on potatoes by hyperspectral imaging technology[J]. Laser Journal, 2016, 37(3): 20-24. | 64 | 王金灿 . 果蔬农药残留快检的方法与应用[J]. 食品安全导刊, 2018(36): 69-70. | 64 | WANG J . Methods and application of quick inspection of pesticide residues in fruits and vegetables[J]. Food Safety Guide, 2018(36): 69-70. | 65 | 王春和 . 拉曼光谱技术在农产品质量安全检测中的应用[J]. 农业开发与装备, 2019(3): 79. | 65 | WANG C . The application of Raman spectroscopy in the quality and safety inspection of agricultural products[J]. Agricultural Development and Equipment, 2019(3): 79. | 66 | 韩宇, 朱莉娅, 陈文, 等 . 基于表面增强拉曼散射检测果蔬中农药残留的方法研究[J]. 食品工业科技, 2017, 38(19): 337-341. | 66 | HAN Y , ZHU L , CHEN W , et al . Study on the methods of detection of pesticides residue in fruits and vegetables based on surface enhanced Raman scattering[J]. Food Industry Science and Technology, 2017, 38(19): 337-341. | 67 | 傅霞萍, 应义斌 . 基于NIR和Raman光谱的果蔬质量检测研究进展与展望[J]. 农业机械学报, 2013, 44(8): 148-164. | 67 | FU X , YING Y . Application of NIR and Raman spectroscopy for quality and safety inspection of fruit and vegetables: A review[J]. Transactions of the CSAM, 2013, 44(8): 148-164. | 68 | 陈思雨, 张舒慧, 张纾, 等 . 基于共聚焦拉曼光谱技术的苹果轻微损伤早期判别分析[J].光谱学与光谱分析, 2018, 38(2): 430-435. | 68 | CHEN S , ZHANG S , ZHANG S , et al . Detection of early tiny bruises in apples using confocal raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 430-435. | 69 | 刘燕德, 肖怀春, 孙旭东, 等 . 基于共焦显微拉曼的柑橘黄龙病无损检测研究[J]. 光谱学与光谱分析, 2018, 38(1): 111-116. | 69 | LIU Y , XIAO H , SUN X , et al . Researching of non-destructive detection for citrus greening based on confocal Micro-Raman[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 111-116. | 70 | 代芬, 邱泽源, 邱倩, 等 . 基于拉曼光谱和自荧光光谱的柑橘黄龙病快速检测方法[J]. 智慧农业, 2019, 1(3): 77-86. | 70 | DAI F , QIU Z , QIU Q , et al . Rapid detection of citrus Huanglongbing using Raman spectroscopy and auto-fluorescence spectroscopy[J]. Smart Agriculture, 2019, 1(3): 77-86. | 71 | SANCHEZ L , PANT S , IREY M , et al . Detection and identification of canker and blight on orange trees using a hand-held Raman spectrometer[J]. Journal of Raman Spectroscopy, 2019, 50(12): 1875-1880. | 72 | LIN Y , LIN H , LIN Y . Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan[J]. PLoS ONE, 2020, 15(3): ID e0230330. | 73 | GUO Z , WANG M , BARIMAH A O , et al . Label-free surface enhanced Raman scattering spectroscopy for discrimination and detection of dominant apple spoilage fungus[J]. International Journal of Food Microbiology, 2020, 338: ID 108990. | 74 | 刘燕德, 靳昙昙 . 拉曼光谱技术在农产品质量安全检测中的应用[J]. 光谱学与光谱分析, 2015, 35(9): 2567-2572. | 74 | LIU Y , JIN T . Application of Raman spectroscopy technique to agricultural products quality and safety determination[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2567-2572. | 75 | 徐赛, 陆华忠, 丘广俊, 等 . 水果品质无损检测研究进展及应用现状[J]. 广东农业科学, 2020, 47(12): 229-236. | 75 | XU S , LU H , QIU G , et al . Research progress and application status of fruit quality nondestructive detection technology[J]. Guangdong Agricultural Sciences, 2020, 47(12): 229-236. | 76 | SOOD S , SINGH H . Computer vision and machine learning based approaches for food security: A review[J]. Multimedia Tools and Applications, 2021(3): 1-27. | 77 | 窦文卿, 柴春祥, 鲁晓翔 . 无损检测技术在水果品质评价中应用的研究进展[J]. 食品工业科技, 2020, 41(24): 354-359. | 77 | DOU W , CHAI C , LU X . Research progress of non-destructive detection technique in fruit quality evaluation[J]. Science and Technology of Food Industry, 2020, 41(24): 354-359. | 78 | 冯建英, 李鑫, 原变鱼, 等 . 智能感官技术在水果检测中的应用进展及趋势[J]. 南方农业学报, 2020, 51(3): 636-644. | 78 | FENG J , LI X , YUAN B , et al . Progress and trend of fruit detection by intelligent sensory technology[J]. Southern Journal of Agricultural Sciences, 2020, 51(3): 636-644. | 79 | CHEN H , QIAO H , FENG Q , et al . Rapid detection of pomelo fruit quality using near-infrared hyperspectral imaging combined with chemometric methods[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: ID 616943. | 80 | 任二芳, 牛德宝, 温立香, 等 . 电子鼻和电子舌在水果检测中的应用进展[J]. 食品工业, 2019, 40(10): 261-264. | 80 | REN E , NIU D , WEN L , et al . Application research progress of electronic nose and electronic tongue in fruits detection[J]. Food Industry, 2019, 40(10): 261-264. | 81 | 袁瑞瑞, 刘贵珊, 何建国, 等 . 可见近红外高光谱成像对灵武长枣定量损伤等级判别[J].光谱学与光谱分析, 2021, 41(4): 1182-1187. | 81 | YUAN R , LIU G , HE J , et al . Quantitative damage identification of Lingwu long jujube based on visible near-infrared hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1182-1187. | 82 | YUAN R , LIU G , HE J , et al . Classification of Lingwu long jujube internal bruise over time based on visible near-infrared hyperspectral imaging combined with partial least squares-discriminant analysis[J]. Computers and Electronics in Agriculture, 2021, 182: ID 106043. | 83 | HUANG X , YU S , XU H , et al . Rapid and nondestructive detection of freshness quality of postharvest spinaches based on machine vision and electronic nose[J]. Journal of Food Safety, 2019, 39(6): ID e12708. | 84 | 徐海霞 . 基于机器视觉和电子鼻技术的菠菜新鲜度无损检测研究[D]. 镇江: 江苏大学, 2016. | 84 | XU H . Research on non-destructive testing of spinach freshness based on machine vision and electronic nose technology[D]. Zhenjiang: Jiangsu University, 2016. | 85 | 陈乾辉, 吴德刚 . 基于可见光—红外光图像融合的苹果缺陷检测算法[J]. 食品与机械, 2018, 34(9): 135-138. | 85 | CHEN Q , WU D . Algorithm on apple defect detection based on visible light-infrared light image fusion[J]. Food & Machinery, 2018, 34(9): 135-138. | 86 | LIU Q , SUN K , ZHAO N , et al . Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay[J]. Postharvest Biology and Technology, 2019, 153: 152-160. | 87 | 郭守斌, 魏域斌, 魏玉杰 . 对我国智慧农业发展的思考与建议[J]. 农业科技与信息, 2021(9): 72-75. | 87 | GUO S , WEI Y , WEI Y . Thoughts and suggestions on the development of smart agriculture in China[J]. Agricultural Science and Information, 2021(9): 72-75. | 88 | 史亮, 张复宏, 刘文军 . 物联网+区块链助力食品质量安全保障[J]. 农业与技术, 2019, 3 9(10): 34-36. | 88 | SHI L , ZHANG F , LIU W . The Internet of Things blockchain helps ensure food quality and safety[J]. Agriculture & Technology, 2019, 3 9(10): 34-36. | 89 | 笪海波 . 智能监控物联网管理在果蔬种植中的应用[J]. 现代农业科技, 2018(20): 99-101. | 89 | LA H . Application of intelligent monitoring internet of things management in fruit and vegetable planting[J]. Modern Agricultural Science and Technology, 2018(20): 99-101. | 90 | 郭凌, 刘刚 . 基于无线传感器网络的果蔬冷库监控系统设计[J]. 物流工程与管理, 2018, 40(2): 104-105. | 90 | GUO L , LIU G . Design of fruit and vegetable preservation monitoring system based on wireless sensor network[J]. Logistics Engineering and Management, 2018, 40(2): 104-105 | 91 | 王众, 梁早清, 郑业鲁, 等 . 语义网技术与区块链技术的交集在农产品质量安全追溯领域的应用[J]. 农业图书情报, 2019, 31(1): 60-68. | 91 | WANG Z , LIANG Z , ZHENG Y , et al . Applying the integrated technologies of the semantic web and the blockchain to the agro-products tracing system[J]. Agricultural Library and Information, 2019, 31(1): 60-68. |
|