1 | 秦兴, 宋各方. 基于双线性卷积神经网络的猪脸识别算法[J]. 杭州电子科技大学学报(自然科学版), 2019, 39(2): 12-17. | 1 | QIN X, SONG G. Pig face recognition algorithm based on bilinear convolution neural network[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2019, 39(2): 12-17. | 2 | 何屿彤, 李斌, 张锋, 等. 基于改进YOLOv3的猪脸识别[J]. 中国农业大学学报, 2021, 26(3): 53-62. | 2 | HE Y, LI B, ZHANG F, et al. Pig face recognition based on improved YOLOv3[J]. Journal of China Agricultural University, 2021, 26(3): 53-62. | 3 | 刘忠超, 何东健. 基于卷积神经网络的奶牛发情行为识别方法[J]. 农业机械学报, 2019, 50(7): 186-193. | 3 | LIU Z, HE D. Recognition method of cow estrus behavior based on convolutional neural network[J]. Transactions of the CSAM, 2019, 50(7): 186-193. | 4 | 杨秋妹, 肖德琴, 张根兴. 猪只饮水行为机器视觉自动识别[J]. 农业机械学报, 2018, 49(6): 232-238. | 4 | YANG Q, XIAO D, ZHANG G. Automatic pig drinking behavior recognition with machine vision[J]. Transactions of the CSAM, 2018, 49(6): 232-238. | 5 | 张宏鸣, 周利香, 李永恒, 等. 基于改进MobileFaceNet的羊脸识别方法研究[J/OL]. 农业机械学报:1-10 [2022-05-13]. | 5 | ZHANG H, ZHOU L, LI Y, et al. Sheep face recognition method based on improved mobilefacenet[J/OL]. Transactions of the CSAM, 1-10 [2022-05-13]. . | 6 | 魏征. 基于全局和局部特征相结合的不完美牛眼虹膜识别技术研究[D]. 南京: 东南大学, 2017. | 6 | WEI Z. Research on iris recognition technology of imperfect bull's eye based on the combination of global and local features[D]. Nanjing: Southeast University, 2017. | 7 | 赵凯旋, 何东健. 基于卷积神经网络的奶牛个体身份识别方法[J]. 农业工程学报, 2015, 31(5): 181-187. | 7 | ZHAO K, HE D. Recognition of individual dairy cattle based on convolutional neural networks[J]. Transactions of the CSAE, 2015, 31(5): 181-187. | 8 | 何东健, 刘建敏, 熊虹婷, 等. 基于改进YOLOv3模型的挤奶奶牛个体识别方法[J]. 农业机械学报, 2020, 51(4): 250-260. | 8 | HE D, LIU J, XIONG H, et al. Individual identification of dairy cows based on improved YOLOv3[J]. Transactions of the CSAM, 2020, 51(4): 250-260. | 9 | 陈争涛, 黄灿, 杨波, 等. 基于迁移学习的并行卷积神经网络牦牛脸识别算法[J]. 计算机应用, 2021, 41(5): 1332-1336. | 9 | CHEN Z, HUANG C, YANG B, et al. Parallel convolutional neural network yak face recognition algorithm based on transfer learning[J]. Journal of Computer Applications, 2020, 41(5): 1332-1336. | 10 | HANSEN M F, SMITH M L, SMITH L N, et al. Towards on-farm pig face recognition using convolutional neural networks[J]. Computers in Industry, 2018, 98: 145-152. | 11 | MARSOT M, MEI J, SHAN X, et al. An adaptive pig face recognition approach using convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 173: ID 105386. | 12 | KUMAR S, SINGH S K, SINGH R, et al. Deep learning framework for recognition of cattle using muzzle point image pattern[J]. Measurement, 2018, 116: 1-17. | 13 | JUNG D H, KIM N Y, MOON S H, et al. Deep learning-based cattle vocal classification model and real-time livestock monitoring system with noise filtering[J]. Animals, 2021, 11(2): ID 357. | 14 | SALAMA A, HASSANIEN A E, FAHMY A. Sheep identification using a hybrid deep learning and Bayesian optimization approach[J]. IEEE Access, 2019, 7: 31681-31687. | 15 | WADA N, SHINYA M, SHIRAISHI M. Pig face recognition using eigenspace method[J]. ITE Transactions on Media Technology & Applications, 2013, 1(4): 328-332. | 16 | RASHID M, GU X, LEE Y J. Interspecies knowledge transfer for facial keypoint detection[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2017: 1600-1609. | 17 | WANG Z, BOVIK A C, SHEIKN H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. | 18 | 陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. | 18 | CHEN G, ZHAO S, CAO L, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1 (2): 34-44. | 19 | 李淼, 王敬贤, 李华龙, 等. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3):46-55. | 19 | LI M, WANG J, LI H, et al. Method for identifying crop disease based on cnn and transfer learning[J]. Smart Agriculture, 2019, 1(3):46-55. | 20 | LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C]// The European Conference on Computer Vision. Cham, Switzerland: Springer, 2018: 385-400. | 21 | SZEGEDY C, WEI L, JIA Y, et al. Going deeper with convolutions[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2015: 1-9. | 22 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2017: 2117-2125. | 23 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2018: 8759-8768. | 24 | TAN M, PANG R, LE Q V. Efficientdet: Scalable and efficient object detection[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2020: 10781-10790. | 25 | 樊湘鹏, 周建平, 许燕, 等. 基于改进卷积神经网络的复杂背景下玉米病害识别[J]. 农业机械学报, 2021, 52(3): 210-217. | 25 | FAN X, ZHOU J, XU Y, et al. Corn disease recognition under complicated background based on improved convolutional neural network[J]. Transactions of the CSAM, 2021, 52(3): 210-217. | 26 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv:. | 27 | HOWARD A, SANDLER M, CHEN B, et al. Searching for Mobilenetv3[C]// The IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2019: 1314-1324. | 28 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016: 2818-2826. |
|