Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 115-125.doi: 10.12133/j.smartag.SA202303011
• Topic--Machine Vision and Agricultural Intelligent Perception • Previous Articles Next Articles
ZHU Haipeng1(), ZHANG Yu'an1(), LI Huanhuan1, WANG Jianwen1, YANG Yingkui2, SONG Rende3
Received:
2023-03-26
Online:
2023-06-30
Foundation items:
About author:
ZHU Haipeng, E-mail:2633866477@qq.com
corresponding author:
ZHANG Yu'an, E-mail:2011990029@qhu.edu.cn
CLC Number:
ZHU Haipeng, ZHANG Yu'an, LI Huanhuan, WANG Jianwen, YANG Yingkui, SONG Rende. Classification and Recognition Method for Yak Meat Parts Based on Improved Residual Network Model[J]. Smart Agriculture, 2023, 5(2): 115-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202303011
1 | 闫忠心. 不同部位牦牛肉品质特性差异及机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
YAN Z X. Study on the quality characteristics and mechanism of yak meat from different parts[D]. Yangling: Northwest A & F University, 2022. | |
2 | 曹兵海, 李俊雅, 王之盛, 等. 2022年度肉牛牦牛产业技术发展报告[J]. 中国畜牧杂志, 2023, 59(3): 330-335. |
CAO B H, LI J Y, WANG Z S, et al. Report on industrial technology development of beef cattle and yak in 2022[J]. Chinese journal of animal science, 2023, 59(3): 330-335. | |
3 | 曹兵海, 李俊雅, 王之盛, 等. 2023年肉牛牦牛产业发展趋势与政策建议[J]. 中国畜牧杂志, 2023, 59(3): 323-329. |
CAO B H, LI J Y, WANG Z S, et al. Development trend and policy suggestions of beef cattle and yak industry in 2023[J]. Chinese journal of animal science, 2023, 59(3): 323-329. | |
4 | BEN M. Spectrum sensing and modulation recognition using a novel CNN Deep Learning model and Learning transfer technique[J]. Przegląd elektrotechniczny, 2023, 1(5): 95-99. |
5 | ZHONG Y, ZHAO M. Research on deep learning in apple leaf disease recognition[J]. Computers and electronics in agriculture, 2020, 168: ID 105146. |
6 | SAHA S, PARK C, KNAPIK S, et al. Deep Learning Discrete Calculus (DLDC): A family of discrete numerical methods by universal approximation for STEM education to frontier research[J]. Computational mechanics, 2023, 72(2): 311-331. |
7 | 王锦锦, 程引会, 聂鑫, 等. 基于机器学习的高空电磁脉冲环境快速计算方法[J]. 计算机科学, 2023, 50(S1): 853-857. |
WANG J J, CHENG Y H, NIE X, et al. Fast calculation method of high-altitude electromagnetic pulse environment based on machine learning[J]. Computer science, 2023, 50(S1): 853-857. | |
8 | 孟小峰, 郝新丽, 马超红, 等. 科学发现中的机器学习方法研究[J]. 计算机学报, 2023, 46(5): 877-895. |
MENG X F, HAO X L, MA C H, et al. Research on machine learning for scientific discovery[J]. Chinese journal of computers, 2023, 46(5): 877-895. | |
9 | BROSSARD M, BONNABEL S. Learning wheel odometry and IMU errors for localization[C]// 2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 291-297. |
10 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1. New York, USA: ACM, 2012: 1097-1105. |
11 | 常瑞扬, 杨海斌. 基于卷积神经网络的农作物病虫害识别研究[J]. 无线互联科技, 2023, 19(2): 159-161. |
CHANG R Y, YANG H B. Research on crop pest identification based on convolution neural network[J]. Wireless Internet technology, 2023, 19(2): 159-161. | |
12 | 陈天娇, 曾娟, 谢成军, 等. 基于深度学习的病虫害智能化识别系统[J]. 中国植保导刊, 2019, 39(4): 26-34. |
CHEN T J, ZENG J, XIE C J, et al. Intelligent identification system of disease and insect pests based on deep learning[J]. China plant protection, 2019, 39(4): 26-34. | |
13 | 陶治, 孔建磊, 金学波, 等. 基于深度学习的农作物病虫害图像识别App系统设计[J]. 计算机应用与软件, 2022, 39(3): 341-345. |
TAO Z, KONG J L, JIN X B, et al. Design of image recognition App system for crop diseases and insect pests based on deep learning[J]. Computer applications and software, 2022, 39(3): 341-345. | |
14 | 周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的西红柿叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56. |
ZHOU Q L, MA L, CAO L Y, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3[J]. Smart agriculture, 2022, 4(1): 47-56. | |
15 | 龚荣新, 鲁向晖, 张海娜, 等. 基于高光谱植被指数的大豆地上部生物量估算模型研究[J]. 大豆科学, 2023, 42(3): 352-359. |
GONG R X, LU X H, ZHANG H N, et al. Study on aboveground biomass estimation model of soybean based on hyperspectral vegetation index[J]. Soybean science, 2023, 42(3): 352-359. | |
16 | SCHNEIDER S, TAYLOR G W, KREMER S C, et al. Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision[J]. Methods in ecology and evolution, 2022, 13(2): 346-357. |
17 | ZHENG C W, ABD-ELRAHMAN A, WHITAKER V M, et al. Deep learning for strawberry canopy delineation and biomass prediction from high-resolution images[J]. Plant phenomics, 2022, 2022: ID 9850486. |
18 | 卜灵心, 来全, 刘心怡. 不同机器学习算法在草原草地生物量估算上的适应性研究[J]. 草地学报, 2022, 30(11): 3156-3164. |
BU L X, LAI Q, LIU X Y. Study on the adaptability of different machine learning algorithms for estimating the biomass of grassland[J]. Journal of grassland science, 2022, 30(11): 3156-3164. | |
19 | 陈占琦, 张玉安, 王文志, 等. 基于迁移学习的多尺度特征融合牦牛脸部识别算法[J]. 智慧农业(中英文), 2022, 4(2): 77-85. |
CHEN Z Q, ZHANG Y A, WANG W Z, et al. Multiscale feature fusion yak face recognition algorithm based on transfer learning[J]. Smart agriculture, 2022, 4(2): 77-85. | |
20 | HAIFA T, BAHRAM S, MASOUD M, et al. Comparison of machine and deep learning methods to estimate shrub willow biomass from UAS imagery[J]. Canadian journal of remote sensing, 2021, 47(2): 209-227. |
21 | 朱俊宇. 基于深度学习压缩模型的沼虾表型数据测定研究[D]. 杭州: 浙江大学, 2022. |
ZHU J Y. Research on phenotypic data determination of Macrobrachium prawn based on deep learning compression model[D]. Hangzhou: Zhejiang University, 2022. | |
22 | 袁德明. 基于深度学习的大豆表型测量方法研究[D]. 济南: 山东大学, 2021. |
YUAN D M. Research on soybean phenotype measurement method based on deep learning[D]. Ji'nan: Shandong University, 2021. | |
23 | 赵鑫龙, 彭彦昆, 李永玉, 等. 基于深度学习的牛肉大理石花纹等级手机评价系统[J]. 农业工程学报, 2020, 36(13): 250-256. |
ZHAO X L, PENG Y K, LI Y Y, et al. Mobile phone evaluation system for grading beef marbling based on deep learning[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(13): 250-256. | |
24 | 孟令峰, 朱荣光, 白宗秀, 等. 基于手机图像的不同贮藏时间下冷却羊肉的部位判别[J]. 食品科学, 2020, 41(23): 21-26. |
MENG L F, ZHU R G, BAI Z X, et al. Discrimination of chilled lamb from different carcass parts at different storage times based on mobile phone images[J]. Food science, 2020, 41(23): 21-26. | |
25 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778. |
[1] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[2] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
[3] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[4] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[5] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
[6] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
[7] | DAI Xin, WANG Junhao, ZHANG Yi, WANG Xinjie, LI Yanxing, DAI Baisheng, SHEN Weizheng. Automatic Detection Method of Dairy Cow Lameness from Top-view Based on the Fusion of Spatiotemporal Stream Features [J]. Smart Agriculture, 2024, 6(4): 18-28. |
[8] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
[9] | HE Feng, WU Huarui, SHI Yangming, ZHU Huaji. Recognition Method of Facility Cucumber Farming Behaviours Based on Improved SlowFast Model [J]. Smart Agriculture, 2024, 6(3): 118-127. |
[10] | ZHANG Ronghua, BAI Xue, FAN Jiangchuan. Crop Pest Target Detection Algorithm in Complex Scenes:YOLOv8-Extend [J]. Smart Agriculture, 2024, 6(2): 49-61. |
[11] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[12] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[13] | ZHOU Huamao, WANG Jing, YIN Hua, CHEN Qi. Phenotype Analysis of Pleurotus Geesteranus Based on Improved Mask R-CNN [J]. Smart Agriculture, 2023, 5(4): 117-126. |
[14] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
[15] | ZHANG Gan, YAN Haifeng, HU Gensheng, ZHANG Dongyan, CHENG Tao, PAN Zhenggao, XU Haifeng, SHEN Shuhao, ZHU Keyu. Identification Method of Wheat Field Lodging Area Based on Deep Learning Semantic Segmentation and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 75-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||