Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 115-125.doi: 10.12133/j.smartag.SA202303011
• Topic--Machine Vision and Agricultural Intelligent Perception • Previous Articles Next Articles
ZHU Haipeng1(), ZHANG Yu'an1(
), LI Huanhuan1, WANG Jianwen1, YANG Yingkui2, SONG Rende3
Received:
2023-03-26
Online:
2023-06-30
Foundation items:
Qinghai Provincial Science and Technology Plan Project (2020-QY-218); National Modern Agricultural Industry Technology System Funding (CARS-37)
About author:
ZHU Haipeng, E-mail:2633866477@qq.com
corresponding author:
ZHANG Yu'an, E-mail:2011990029@qhu.edu.cn
CLC Number:
ZHU Haipeng, ZHANG Yu'an, LI Huanhuan, WANG Jianwen, YANG Yingkui, SONG Rende. Classification and Recognition Method for Yak Meat Parts Based on Improved Residual Network Model[J]. Smart Agriculture, 2023, 5(2): 115-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202303011
1 | 闫忠心. 不同部位牦牛肉品质特性差异及机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
YAN Z X. Study on the quality characteristics and mechanism of yak meat from different parts[D]. Yangling: Northwest A & F University, 2022. | |
2 | 曹兵海, 李俊雅, 王之盛, 等. 2022年度肉牛牦牛产业技术发展报告[J]. 中国畜牧杂志, 2023, 59(3): 330-335. |
CAO B H, LI J Y, WANG Z S, et al. Report on industrial technology development of beef cattle and yak in 2022[J]. Chinese journal of animal science, 2023, 59(3): 330-335. | |
3 | 曹兵海, 李俊雅, 王之盛, 等. 2023年肉牛牦牛产业发展趋势与政策建议[J]. 中国畜牧杂志, 2023, 59(3): 323-329. |
CAO B H, LI J Y, WANG Z S, et al. Development trend and policy suggestions of beef cattle and yak industry in 2023[J]. Chinese journal of animal science, 2023, 59(3): 323-329. | |
4 | BEN M. Spectrum sensing and modulation recognition using a novel CNN Deep Learning model and Learning transfer technique[J]. Przegląd elektrotechniczny, 2023, 1(5): 95-99. |
5 | ZHONG Y, ZHAO M. Research on deep learning in apple leaf disease recognition[J]. Computers and electronics in agriculture, 2020, 168: ID 105146. |
6 | SAHA S, PARK C, KNAPIK S, et al. Deep Learning Discrete Calculus (DLDC): A family of discrete numerical methods by universal approximation for STEM education to frontier research[J]. Computational mechanics, 2023, 72(2): 311-331. |
7 | 王锦锦, 程引会, 聂鑫, 等. 基于机器学习的高空电磁脉冲环境快速计算方法[J]. 计算机科学, 2023, 50(S1): 853-857. |
WANG J J, CHENG Y H, NIE X, et al. Fast calculation method of high-altitude electromagnetic pulse environment based on machine learning[J]. Computer science, 2023, 50(S1): 853-857. | |
8 | 孟小峰, 郝新丽, 马超红, 等. 科学发现中的机器学习方法研究[J]. 计算机学报, 2023, 46(5): 877-895. |
MENG X F, HAO X L, MA C H, et al. Research on machine learning for scientific discovery[J]. Chinese journal of computers, 2023, 46(5): 877-895. | |
9 | BROSSARD M, BONNABEL S. Learning wheel odometry and IMU errors for localization[C]// 2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 291-297. |
10 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1. New York, USA: ACM, 2012: 1097-1105. |
11 | 常瑞扬, 杨海斌. 基于卷积神经网络的农作物病虫害识别研究[J]. 无线互联科技, 2023, 19(2): 159-161. |
CHANG R Y, YANG H B. Research on crop pest identification based on convolution neural network[J]. Wireless Internet technology, 2023, 19(2): 159-161. | |
12 | 陈天娇, 曾娟, 谢成军, 等. 基于深度学习的病虫害智能化识别系统[J]. 中国植保导刊, 2019, 39(4): 26-34. |
CHEN T J, ZENG J, XIE C J, et al. Intelligent identification system of disease and insect pests based on deep learning[J]. China plant protection, 2019, 39(4): 26-34. | |
13 | 陶治, 孔建磊, 金学波, 等. 基于深度学习的农作物病虫害图像识别App系统设计[J]. 计算机应用与软件, 2022, 39(3): 341-345. |
TAO Z, KONG J L, JIN X B, et al. Design of image recognition App system for crop diseases and insect pests based on deep learning[J]. Computer applications and software, 2022, 39(3): 341-345. | |
14 | 周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的西红柿叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56. |
ZHOU Q L, MA L, CAO L Y, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3[J]. Smart agriculture, 2022, 4(1): 47-56. | |
15 | 龚荣新, 鲁向晖, 张海娜, 等. 基于高光谱植被指数的大豆地上部生物量估算模型研究[J]. 大豆科学, 2023, 42(3): 352-359. |
GONG R X, LU X H, ZHANG H N, et al. Study on aboveground biomass estimation model of soybean based on hyperspectral vegetation index[J]. Soybean science, 2023, 42(3): 352-359. | |
16 | SCHNEIDER S, TAYLOR G W, KREMER S C, et al. Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision[J]. Methods in ecology and evolution, 2022, 13(2): 346-357. |
17 | ZHENG C W, ABD-ELRAHMAN A, WHITAKER V M, et al. Deep learning for strawberry canopy delineation and biomass prediction from high-resolution images[J]. Plant phenomics, 2022, 2022: ID 9850486. |
18 | 卜灵心, 来全, 刘心怡. 不同机器学习算法在草原草地生物量估算上的适应性研究[J]. 草地学报, 2022, 30(11): 3156-3164. |
BU L X, LAI Q, LIU X Y. Study on the adaptability of different machine learning algorithms for estimating the biomass of grassland[J]. Journal of grassland science, 2022, 30(11): 3156-3164. | |
19 | 陈占琦, 张玉安, 王文志, 等. 基于迁移学习的多尺度特征融合牦牛脸部识别算法[J]. 智慧农业(中英文), 2022, 4(2): 77-85. |
CHEN Z Q, ZHANG Y A, WANG W Z, et al. Multiscale feature fusion yak face recognition algorithm based on transfer learning[J]. Smart agriculture, 2022, 4(2): 77-85. | |
20 | HAIFA T, BAHRAM S, MASOUD M, et al. Comparison of machine and deep learning methods to estimate shrub willow biomass from UAS imagery[J]. Canadian journal of remote sensing, 2021, 47(2): 209-227. |
21 | 朱俊宇. 基于深度学习压缩模型的沼虾表型数据测定研究[D]. 杭州: 浙江大学, 2022. |
ZHU J Y. Research on phenotypic data determination of Macrobrachium prawn based on deep learning compression model[D]. Hangzhou: Zhejiang University, 2022. | |
22 | 袁德明. 基于深度学习的大豆表型测量方法研究[D]. 济南: 山东大学, 2021. |
YUAN D M. Research on soybean phenotype measurement method based on deep learning[D]. Ji'nan: Shandong University, 2021. | |
23 | 赵鑫龙, 彭彦昆, 李永玉, 等. 基于深度学习的牛肉大理石花纹等级手机评价系统[J]. 农业工程学报, 2020, 36(13): 250-256. |
ZHAO X L, PENG Y K, LI Y Y, et al. Mobile phone evaluation system for grading beef marbling based on deep learning[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(13): 250-256. | |
24 | 孟令峰, 朱荣光, 白宗秀, 等. 基于手机图像的不同贮藏时间下冷却羊肉的部位判别[J]. 食品科学, 2020, 41(23): 21-26. |
MENG L F, ZHU R G, BAI Z X, et al. Discrimination of chilled lamb from different carcass parts at different storage times based on mobile phone images[J]. Food science, 2020, 41(23): 21-26. | |
25 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778. |
[1] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[2] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[3] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[4] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
[5] | JIN Ning, GUO Yufeng, HAN Xiaodong, MIAO Yisheng, WU Huarui. Method for Calculating Semantic Similarity of Short Agricultural Texts Based on Transfer Learning [J]. Smart Agriculture, 2025, 7(1): 33-43. |
[6] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[7] | YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan. Rice Leaf Disease Image Enhancement Based on Improved CycleGAN [J]. Smart Agriculture, 2024, 6(6): 96-108. |
[8] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[9] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
[10] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[11] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[12] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
[13] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
[14] | DAI Xin, WANG Junhao, ZHANG Yi, WANG Xinjie, LI Yanxing, DAI Baisheng, SHEN Weizheng. Automatic Detection Method of Dairy Cow Lameness from Top-view Based on the Fusion of Spatiotemporal Stream Features [J]. Smart Agriculture, 2024, 6(4): 18-28. |
[15] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||