Smart Agriculture ›› 2022, Vol. 4 ›› Issue (1): 47-56.doi: 10.12133/j.smartag.SA202202003
• Topic--Crop Growth and Its Environmental Monitoring • Previous Articles Next Articles
ZHOU Qiaoli(), MA Li(
), CAO Liying, YU Helong(
)
Received:
2022-02-14
Online:
2022-03-30
Published:
2022-04-28
corresponding author:
MA Li,YU Helong
E-mail:15947868426@163.com;mali@jlau.edu.cn;3177649103@qq.com
CLC Number:
ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3[J]. Smart Agriculture, 2022, 4(1): 47-56.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.SA202202003
1 | 张创创, 袁帅坤, 霍克坤. 影响番茄生产效益的因素[J]. 湖北农机化, 2020(12): 33-34. |
ZHANG C, YUAN S, HUO K. Factors affecting tomato production efficiency[J]. Hubei Agricultural Mechanization, 2020(12): 33-34. | |
2 | 王建玺, 宁菲菲, 鲁书喜. 基于支持向量机的苹果叶部病害识别方法研究[J]. 山东农业科学, 2015, 47(7): 122-125, 141. |
WANG J, NING F, LU S. Study on apple leaf disease identification method based on support vector machine[J]. Shandong Agricultural Science, 2015, 47(7): 122-125, 141. | |
3 | 秦丰, 刘东霞, 孙炳达, 等. 基于图像处理技术的四种苜蓿叶部病害的识别[J]. 中国农业大学学报, 2016, 21(10): 65-75. |
QIN F, LIU D, SUN B, et al. Recognition of four different alfalfa leaf diseases based on image processing technology[J]. Journal of China Agricultural University, 2016, 21 (10): 65-75. | |
4 | 夏永泉, 李耀斌, 李晨. 基于图像处理技术的小麦叶部病害识别研究[J]. 科技通报, 2016, 32(4): 92-95. |
XIA Y, LI Y, LI C. Recognition of wheat leaf disease based on image processing technology[J]. Science and Technology Bulletin, 2016, 32(4): 92-95. | |
5 | 刘婷婷, 王婷, 胡林. 基于卷积神经网络的水稻纹枯病图像识别[J]. 中国水稻科学, 2019, 33(1): 90-94. |
LIU T, WANG T, HU L. Rhizocotonia Solani recognition algorithm based on convolution neural network[J]. China Journal of Rice Science, 2019, 33(1): 90-94. | |
6 | WU Y. Identification of maize leaf diseases based on convolutional neural network[J]. Journal of Physics: Conference Series, 2021, 1748(3): ID 032004. |
7 | 丁瑞, 周平. 基于卷积神经网络的典型农作物叶病害识别算法[J]. 包装学报, 2018, 10(6): 74-80. |
DING R, ZHOU P. Identification of typical crop leaf diseases based on convolutional neural network[J]. Packaging Journal, 2018, 10(6): 74-80. | |
8 | 陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. |
CHEN G, ZHAO S, CAO L, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1(2): 34-44. | |
9 | WAHEED A, MUSKAN G, GUPTA D, et al. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf[J]. Computers and Electronics in Agriculture, 2020, 175: ID 105456. |
10 | 常江, 管声启, 师红宇, 等. 基于改进生成对抗网络和MobileNetV3的带钢缺陷分类[J]. 激光与光电子学进展, 2021, 58(4): 221-226. |
CHANG J, GUAN S, SHI H, et al. Strip defect classification based on improved generative adversarial networks and MobileNetV3[J]. Laser & Optoelectronics Progress, 2021, 58(4): 221-226. | |
11 | FAYE M, CHEN B, KANE A S. Plant disease detection with deep learning and feature extraction using plant village[J]. Journal of Computer and Communications, 2020, 8(6):10-22. |
12 | WANG X, ZHANG C, ZHANG S. Multiscale convolutional neural networks with attention for plant species recognition[J]. Computational Intelligence and Neuroscience, 2021, 2021: ID 5529905. |
13 | ZOHAIB M, SHUN F, QUOC V. Spectral images based environmental sound classification using CNN with meaningful data augmentation[J]. Applied Acoustics, 2021, 172 :ID 107581. |
14 | 陆健强, 林佳翰, 黄仲强, 等. 基于Mixup算法和卷积神经网络的柑橘黄龙病果实识别研究[J]. 华南农业大学学报, 2021, 42(3): 94-101. |
LU J, LIN J, HUANG Z, et al. Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network[J]. Journal of South China Agricultural University, 2021, 42(3): 94-101. | |
15 | 葛丽君. 混合beta分布的建模方法研究[J]. 南国博览, 2019(4): 166. |
16 | 易强, 李成娟, 李宝清, 等. 基于改进MobileNetV1网络的野外车辆识别[J]. 工业控制计算机, 2020, 33(7): 104-107. |
YI Q, LI C, LI B, et al. Field vehicle recognition based on improved MobileNetV1 network[J]. Industrial Control Computer, 2020, 33(7): 104-107. | |
17 | 陈智超, 焦海宁, 杨杰, 等. 基于改进MobileNetV2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499. |
CHEN Z, JIAO H, YANG J, et al. Garbage image classification algorithm based on improved MobileNetV2[J]. Journal of Zhejiang University (Engineering Edition), 2021, 55(8): 1490-1499. | |
18 | LI X, SHEN X, ZHOU Y, et al. Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet)[J]. PLoS One, 2020, 15(5): ID e0232127 |
19 | 李淼, 王敬贤, 李华龙, 等. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55. |
LI M, WANG J, LI H, et al. Method for crop disease identification based on CNN and transfer learning[J]. Smart Agriculture, 2019, 1(3): 46-55. | |
20 | MOON J, HOSSAIN M B, CHON K H. AR and ARMA model order selection for time-series modeling with ImageNet classification[J]. Signal Processing, 2021, 183(10): ID 108026. |
21 | 姚燕, 胡立坤, 郭军. 基于深度迁移网络MobileNetV3的地形识别[J]. 广西大学学报(自然科学版), 2021, 46(4): 996-1007. |
YAO Y, HU L, GUO J. Terrain recognition based on deep migration network MobileNetV3[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46 (4): 996-1007. | |
22 | AMAHAN P A, VILLARICA M V, VINLUAN A A. Technical analysis of Twitter data in preparation of prediction using multilayer perceptron algorithm[C]// Proceedings of 2021 4th International Conference on Data Science and Information Technology (DSIT 2021). New York, USA: Association for Computing Machinery, 2021: 120-124. |
23 | KUMAR V, SINGH R, DUA Y. Morphologically dilated convolutional neural network for hyperspectral image classification[J]. Signal Processing: Image Communication, 2022, 101: ID 116549. |
24 | 耿海波. 基于U-Net模型的单声道唱声分离研究[D]. 乌鲁木齐: 新疆大学, 2020. |
GENG H. Research on mono singing sound separation based on U-Net model[D]. Urumqi: Xinjiang University, 2020. | |
25 | MABUNI D, BABU S A. High accurate and a variant of k-fold cross validation technique for predicting the decision tree classifier accuracy[J]. International Journal of Innovative Technology and Exploring Engineering, 2021, 10(2): 105-110. |
[1] | ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao. Accurate Extraction of Apple Orchard on the Loess Plateau Based on Improved Linknet Network [J]. Smart Agriculture, 2022, 4(3): 95-107. |
[2] | CHEN Zhanqi, ZHANG Yu'an, WANG Wenzhi, LI Dan, HE Jie, SONG Rende. Multiscale Feature Fusion Yak Face Recognition Algorithm Based on Transfer Learning [J]. Smart Agriculture, 2022, 4(2): 77-85. |
[3] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[4] | Li Miao, Wang Jingxian, Li Hualong, Hu Zelin, Yang XuanJiang, Huang Xiaoping, Zeng Weihui, Zhang Jian, Fang Sisi. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agriculture, 2019, 1(3): 46-55. |
[5] | Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||