1 | 李安宁, 郭京华, 刘小伟, 等 . 赴美国精准农业考察情况报告——中美科技合作交流计划精准农业考察团[J]. 农业工程技术, 2018, 38(9): 112-117. | 2 | Pierce F J , Nowak P . Aspects of Precision Agriculture [J]. Advances in Agronomy, 1999, 67(1):1-85. | 3 | 吴才聪 . 美国精准农业技术应用概况及北斗农业应 用思考[J]. 卫星应用( 6:16-20. | 4 | 刘小伟, 吴才聪 . 基于北斗系统发展我国精准农业技术装备[J]. 农业工程技术, 2018, 38(18): 14-19. | 5 | 余有成 . 智能奥秘探寻记[M]. 香港: 香港文汇出版社, 2012. | 6 | 韩树丰, 何勇, 方慧 . 农机自动导航及无人驾驶车辆的发展综述[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 381-391. | 6 | Han S , He Y , Fang H . Recent development in automatic guidance and autonomous vehicle for agriculture: A review[J]. Journal of Zhejiang University (Agric. & Life Sci.), 2018, 44(4: 381-391. | 7 | 赵春江 . 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. | 7 | Zhao C . State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | 8 | 罗锡文, 廖娟, 邹湘军, 等 . 信息技术提升农业机械化水平[J]. 农业工程学报, 2016, (20): 1-14. | 8 | Luo X , Liao J , Zou X , et al . Enhancing agricultural mechanization level through information technology[J]. Transactions of the CSAE, 2016, 32(20): 1-14. | 9 | 罗锡文, 廖娟, 胡炼, 等 . 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报, 2016, 32(1): 1-11. | 9 | Luo X , Liao J , Hu L , et al . Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the CSAE, 2016, 32 (1): 1-11. | 10 | 吴才聪, 苑严伟, 韩云霞 . 北斗在农业生产过程中的应用[M]. 北京: 电子工业出版社, 2016. | 11 | 李金良, 倪国庆, 朱金光, 等 . 我国农业装备产业技术发展方向及路径[J]. 农业机械, 2019, (8): 81-85. | 12 | 北斗卫星导航系统 . 北斗卫星导航系统介绍[EB/OL]. [2019-11-10]. | 12 | China Satellite Navigation System Management Office . Introduction to BeiDou Navigation Satellite System[EB/OL]. [2019-11-10]. . | 13 | Yang Y , Li X . Micro-PNT and comprehensive PNT[J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1249-1254. | 14 | Yang Y , Gao W , Guo S , et al . Introduction to BeiDou-3 navigation satellite system[J]. Navigation, Journal of the Institute of Navigation, 2019, 66(1): 7-18. | 15 | Betz J W , Lu M , Morton Y T J , et al . Introduction to the special issue on the BeiDou navigation system[J]. Navigation, Journal of the Institute of Navigation, 2019, 66(1): 3-5. | 16 | Wang J , Zhu Y , Chen Z , et al . Auto-steering based precise coordination method for in-field multi-operation of farm machinery[J]. Int J Agric & Biol Eng, 2018, 11(5): 174-181. | 17 | Shen K , Lin Z , Ying X , et al . Agricultural machinery automatic guidance technology based on patent map[J]. International Agricultural Engineering Journal, 2017, 26(2): 1-11. | 18 | Han X Z , Kim H J , Kim J Y , et al . Path-tracking simulation and field tests for an auto-guidance tillage tractor for a paddy field[J]. Computers and Electronics in Agriculture, 2015, 112: 161-171. | 19 | 汪懋华 . 助力乡村振兴 推进“智慧农业”创新发展[J]. 智慧农业, 2019, 1(1). | 19 | Wang M . To promote the innovation and development of "smart agriculture" in rural areas[J]. Smart Agriculture, 2019, 1(1). | 20 | Zhang Q , Pierce F J . Agricultural automation: Fundamentals and practices[M]. New York: CRC Press, 2013. | 21 | Abu Bakar B , Ahmad M T , Ghazali M S S , et al . Leveling-index based variable rate seeding technique for paddy[J]. Precision Agriculture, 2019. | 22 | 杨丽, 颜丙新, 张东兴, 等 . 玉米精密播种技术研究进展[J]. 农业机械学报, 2016, 47(11): 38-48. | 22 | Yang L , Yan B , Zhang D , et al . Research progress on precision planting technology of maize[J]. Transactions of the CSAM, 2016, 47(11): 38-48. | 23 | 韩英, 贾如, 唐汉 . 精准变量施肥机械研究现状与发展建议[J]. 农业工程, 2019, 9(5):1-6. | 23 | Han Ying , Jia Ru , Tang Han . Research status and development suggestions of precision variable-rate fertilization machine[J]. Agricultural Engineering, 2019, 9(5): 1-6. | 24 | Wang L , Lan Y , Yue X , et al . Vision-based adaptive variable rate spraying approach for unmanned aerial vehicles[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3): 18-26. | 25 | Baio F H R , Neves D C , Souza H B , et al . Variable rate spraying application on cotton using an electronic flow controller[J]. Precision Agriculture, 2018, 19(5): 912-928. | 26 | Wen S , Zhang Q , Deng J , et al . Design and experiment of a variable spray system for unmanned aerial vehicles based on PID and PWM control[J]. Applied Sciences-Basel, 2018, 8(12): 2482. | 27 | 中国商业数据网 . 2019-2024年中国无人机市场前景及投资机会研究报[R]. 2019. | 28 | Sun H , Slaughter D C , Perez-Ruiz M. , et al . RTK GPS mapping of transplanted row crops[J]. Computers and Electronics in Agriculture, 2010, 71: 32-37. | 29 | Carballido J , Perez-Ruiz M , Emmi L , et al . Comparison of positional accuracy between RTK and RTX GNSS based on the autonomous agricultural vehicles under field conditions[J]. Applied Engineering in Agriculture, 2014, 30(3): 361-366. | 30 | Zhang S , Xue X , Chen C , et al . Development of a low-cost quadrotor UAV based on ADRC for agricultural remote sensing[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(4): 82-87. | 31 | Zang Y , Zang Y , Zhou Z , et al . Design and anti-sway performance testing of pesticide tanks in spraying UAVs[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(1): 10-16. | 32 | Wang X , He X , Song J , et al . Drift potential of UAV with adjuvants in aerial applications[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 54-58. | 33 | Bochtis D D , S?rensen C G C , Busato P . Advances in agricultural machinery management: A review[J]. Biosystems Engineering, 2014, 126: 69-81. | 34 | Wu C , Zhou L , Wang J , et al . Smartphone based precise monitoring method for farm operation[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(3): 111-121. | 35 | Wu C , Zhao J , Wang J , et al . Model and system for cotton-picker operation scheduling[C]// American Society of Agricultural and Biological Engineers Annual International Meeting 2015. | 36 | 杨杰 . 上海启动农机购置补贴“三合一”试点[J]. 中国农机监理, 2019, (6): 26. | 37 | Li E , Yang M , Cook M L . Agricultural machinery cooperatives in China: Origin, development, and innovation[C]// Reno, Nevada, 2009. | 38 | 李先德, 宗义湘 . 农业补贴政策的国际比较[M]. 北京: 中国农业科学技术出版社, 2012. |
|