1 |
樊泽泽. 苹果果实检测与物候期自动识别方法的研究与实现[D]. 太原: 太原理工大学, 2020.
|
|
FAN Z Z. Research and implementation on automatic method of apple detection and phenological period classification[D]. Taiyuan: Taiyuan University of Technology, 2020.
|
2 |
高登涛, 李丙智. 图说苹果高效栽培: 全彩版[M]. 北京: 机械工业出版社, 2018: 60-104.
|
|
GAO D T, LI B Z. Caption efficient cultivation of apple: full color edition[M]. Beijing: China Machine Press, 2018: 60-104.
|
3 |
CHEN Z Y, SU R, WANG Y L, et al. Automatic estimation of apple orchard blooming levels using the improved YOLOv5[J]. Agronomy, 2022, 12(10): ID 2483.
|
4 |
李诗涛, 张王菲, 赵丽仙, 等. 基于时序PolSAR影像与决策树模型的油菜物候期识别[J]. 浙江农业学报, 2021, 33(11): 2116-2127.
|
|
LI S T, ZHANG W F, ZHAO L X, et al. Phenological period identification of oilseed rape based on time-series PolSAR image and decision tree model[J]. Acta agriculturae zhejiangensis, 2021, 33(11): 2116-2127.
|
5 |
王志毅, 王嘉佩, 杜爱军, 等. 基于深度学习的自动判别茶叶生长的物候期模型的建立[J]. 气象科技进展, 2021, 11(2): 119-120, 137.
|
|
WANG Z Y, WANG J P, DU A J, et al. A deep-learning based model used to automaticly identification white tea's phenological period[J]. Advances in meteorological science and technology, 2021, 11(2): 119-120, 137.
|
6 |
TAN S Y, LU H H, YU J, et al. In-field rice panicles detection and growth stages recognition based on RiceRes2Net[J]. Computers and electronics in agriculture, 2023, 206: ID 107704.
|
7 |
LI Y, LIU H B, WEI J L, et al. Research on winter wheat growth stages recognition based on mobile edge computing[J]. 2023, 13(3): 534-550.
|
8 |
AGUIAR A S, MAGALHÃES S A, DOS SANTOS F N, et al. Grape bunch detection at different growth stages using deep learning quantized models[J]. Agronomy, 2021, 11(9): ID 1890.
|
9 |
TIAN Y N, YANG G D, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLOv3 model[J]. Computers and electronics in agriculture, 2019, 157: 417-426.
|
10 |
许增, 王志伟, 胡桃花, 等. 改进的轻量级YOLO在苹果物候期自动观测中的研究[J]. 计算机工程与设计, 2021, 42(12): 3478-3484.
|
|
XU Z, WANG Z W, HU T H, et al. Improved lightweight YOLO in automatic observation of apple phenology[J]. Computer engineering and design, 2021, 42(12): 3478-3484.
|
11 |
傅隆生, 宋珍珍, ZHANG X, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120.
|
|
FU L S, SONG Z Z, ZHANG X, et al. Applications and research progress of deep learning in agriculture[J]. Journal of China agricultural university, 2020, 25(2): 105-120.
|
12 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
|
13 |
LI X, RAI L. Apple leaf disease identification and classification using ResNet models[C]// 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). Piscataway, NJ, USA: IEEE, 2021: 738-742.
|
14 |
LI B Q, HE Y Y. An improved ResNet based on the adjustable shortcut connections[J]. IEEE access, 2018, 6: 18967-18974.
|
15 |
杨春兰, 朱鹏飞, 许成祥. 融合注意力机制的淡水鱼类识别方法[J]. 西南民族大学学报(自然科学版), 2023, 49(1): 83-93.
|
|
YANG C L, ZHU P F, XU C X. Freshwater fish identification method incorporating attention mechanism[J]. Journal of Southwest minzu university (natural science edition), 2023, 49(1): 83-93.
|
16 |
卓力, 袁帅, 李嘉锋. 基于ResNet50和通道注意力机制的行人多属性协同识别方法[J]. 测控技术, 2022, 41(8): 1-8, 15.
|
|
ZHUO L, YUAN S, LI J F. Pedestrian multi-attribute collaborative recognition method based on ResNet50 and channel attention mechanism[J]. Measurement & control technology, 2022, 41(8): 1-8, 15.
|
17 |
刘永波, 黄强, 高文波, 等. 融合BERT-WWM和注意力机制的茶叶知识图谱构建[J]. 西南农业学报, 2022, 35(12): 2912-2921.
|
|
LIU Y B, HUANG Q, GAO W B, et al. Construction of knowledge graph of integrating BERT-WWM and attention mechanism[J]. Southwest China journal of agricultural sciences, 2022, 35(12): 2912-2921.
|
18 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011-2023.
|
19 |
HE J, JIANG D. Fully automatic model based on SE-ResNet for bone age assessment[J]. IEEE access, 2021, 9: 62460-62466.
|
20 |
龙洁花, 郭文忠, 林森, 等. 改进YOLOv4的温室环境下草莓生育期识别方法[J]. 智慧农业(中英文), 2021, 3(4): 99-110.
|
|
LONG J H, GUO W Z, LIN S, et al. Strawberry growth period recognition method under greenhouse environment based on improved YOLOv4[J]. Smart agriculture, 2021, 3(4): 99-110.
|
21 |
万鹏, 赵竣威, 朱明, 等. 基于改进Res Net50模型的大宗淡水鱼种类识别方法[J]. 农业工程学报, 2021, 37(12): 159-168.
|
|
WAN P, ZHAO J W, ZHU M, et al. Freshwater fish species identification method based on improved Res Net50 model[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(12): 159-168.
|
22 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. arXiv: , 2014.
|
23 |
DU H, WANG W, WANG X R, et al. Autonomous landing scene recognition based on transfer learning for drones[J]. Journal of systems engineering and electronics, 2023, 34(1): 28-35.
|
24 |
刘翱宇, 吴云志, 朱小宁, 等. 基于深度残差网络的玉米病害识别[J]. 江苏农业学报, 2021, 37(1): 67-74.
|
|
LIU A Y, WU Y Z, ZHU X N, et al. Corn disease recognition based on deep residual network[J]. Jiangsu journal of agricultural sciences, 2021, 37(1): 67-74.
|