1 |
ZHU X L, ZHU M, REN H E. Method of plant leaf recognition based on improved deep convolutional neural network[J]. Cognitive systems research, 2018, 52: 223-233.
|
2 |
丁永军, 张晶晶, 李民赞. 基于卷积胶囊网络的百合病害识别研究[J]. 农业机械学报, 2020, 51(12): 246-251, 331.
|
|
DING Y J, ZHANG J J, LI M Z. Disease detection of lily based on convolutional capsule network[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(12): 246-251, 331.
|
3 |
LI D S, WANG R J, XIE C J, et al. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network[J]. Sensors (basel, Switzerland), 2020, 20(3): ID 578.
|
4 |
周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56.
|
|
ZHOU Q L, MA L, CAO L Y, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3[J]. Smart agriculture, 2022, 4(1): 47-56.
|
5 |
任冬伟, 王旗龙, 魏云超, 等. 视觉弱监督学习研究进展[J]. 中国图象图形学报, 2022, 27(6): 1768-1798.
|
|
REN D W, WANG Q L, WEI Y C, et al. Progress in weakly supervised learning for visual understanding[J]. Journal of image and graphics, 2022, 27(6): 1768-1798.
|
6 |
MEI S A, YANG H A, YIN Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE transactions on instrumentation and measurement, 2018, 67(6): 1266-1277.
|
7 |
孙美君, 吕超章, 韩亚洪, 等. 弱监督学习下的融合注意力机制的表面缺陷检测[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 920-928.
|
|
SUN M J, LYU C Z, HAN Y H, et al. Weakly supervised surface defect detection based on attention mechanism[J]. Journal of computer-aided design & computer graphics, 2021, 33(6): 920-928.
|
8 |
DESELAERS T, ALEXE B, FERRARI V. Weakly supervised localization and learning with generic knowledge[J]. International journal of computer vision, 2012, 100(3): 275-293.
|
9 |
RUSSAKOVSKY O, LIN Y Q, YU K, et al. Object-centric spatial pooling for image classification[C]// European conference on computer vision. Berlin, Heidelberg, Germany: Springer, 2012: 1-15.
|
10 |
DURAND T, MORDAN T, THOME N, et al. WILDCAT: weakly supervised learning of deep ConvNets for image classification, pointwise localization and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 5957-5966.
|
11 |
CHOE J, SHIM H. Attention-based dropout layer for weakly supervised object localization[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 2214-2223.
|
12 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2921-2929.
|
13 |
王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159.
|
|
WANG Y L, WU J F, LAN P, et al. Apple disease identification using improved Faster R-CNN[J]. Journal of forestry engineering, 2022, 7(1): 153-159.
|
14 |
周敏敏. 基于迁移学习的苹果叶面病害Android检测系统研究[D]. 杨凌: 西北农林科技大学, 2019.
|
|
ZHOU M M. Apple foliage diseases recognition in android system with transfer learning-based[D]. Yangling: Northwest A & F University, 2019.
|
15 |
谢秋菊, 吴梦茹, 包军, 等. 融合注意力机制的个体猪脸识别[J]. 农业工程学报, 2022, 38(7): 180-188.
|
|
XIE Q J, WU M R, BAO J, et al. Individual pig face recognition combined with attention mechanism[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(7): 180-188.
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
|
17 |
涂雪滢, 刘世晶, 钱程. 基于ResNet的典型养殖鱼类识别方法研究[J]. 渔业现代化, 2022, 49(3): 81-88.
|
|
TU X Y, LIU S J, QIAN C. Study on the identification methods of typical cultured fish based on ResNet[J]. Fishery modernization, 2022, 49(3): 81-88.
|
18 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Computer Vision-ECCV 2018. Berlin, Heidelberg, Germany: Springer International Publishing, 2018: 3-19.
|
19 |
FU J L, ZHENG H L, MEI T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 4476-4484.
|
20 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141.
|
21 |
KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[J/OL]. arXiv: , 2017.
|
22 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]// Artificial Intelligence and Statistics Conference. Cambridge, US: MIT Press, 2011: 315-323.
|
23 |
LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[J/OL]. arXiv: ,2016.
|