1 |
闫忠心. 不同部位牦牛肉品质特性差异及机制研究[D]. 杨凌: 西北农林科技大学, 2022.
|
|
YAN Z X. Study on the quality characteristics and mechanism of yak meat from different parts[D]. Yangling: Northwest A & F University, 2022.
|
2 |
曹兵海, 李俊雅, 王之盛, 等. 2022年度肉牛牦牛产业技术发展报告[J]. 中国畜牧杂志, 2023, 59(3): 330-335.
|
|
CAO B H, LI J Y, WANG Z S, et al. Report on industrial technology development of beef cattle and yak in 2022[J]. Chinese journal of animal science, 2023, 59(3): 330-335.
|
3 |
曹兵海, 李俊雅, 王之盛, 等. 2023年肉牛牦牛产业发展趋势与政策建议[J]. 中国畜牧杂志, 2023, 59(3): 323-329.
|
|
CAO B H, LI J Y, WANG Z S, et al. Development trend and policy suggestions of beef cattle and yak industry in 2023[J]. Chinese journal of animal science, 2023, 59(3): 323-329.
|
4 |
BEN M. Spectrum sensing and modulation recognition using a novel CNN Deep Learning model and Learning transfer technique[J]. Przegląd elektrotechniczny, 2023, 1(5): 95-99.
|
5 |
ZHONG Y, ZHAO M. Research on deep learning in apple leaf disease recognition[J]. Computers and electronics in agriculture, 2020, 168: ID 105146.
|
6 |
SAHA S, PARK C, KNAPIK S, et al. Deep Learning Discrete Calculus (DLDC): A family of discrete numerical methods by universal approximation for STEM education to frontier research[J]. Computational mechanics, 2023, 72(2): 311-331.
|
7 |
王锦锦, 程引会, 聂鑫, 等. 基于机器学习的高空电磁脉冲环境快速计算方法[J]. 计算机科学, 2023, 50(S1): 853-857.
|
|
WANG J J, CHENG Y H, NIE X, et al. Fast calculation method of high-altitude electromagnetic pulse environment based on machine learning[J]. Computer science, 2023, 50(S1): 853-857.
|
8 |
孟小峰, 郝新丽, 马超红, 等. 科学发现中的机器学习方法研究[J]. 计算机学报, 2023, 46(5): 877-895.
|
|
MENG X F, HAO X L, MA C H, et al. Research on machine learning for scientific discovery[J]. Chinese journal of computers, 2023, 46(5): 877-895.
|
9 |
BROSSARD M, BONNABEL S. Learning wheel odometry and IMU errors for localization[C]// 2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 291-297.
|
10 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1. New York, USA: ACM, 2012: 1097-1105.
|
11 |
常瑞扬, 杨海斌. 基于卷积神经网络的农作物病虫害识别研究[J]. 无线互联科技, 2023, 19(2): 159-161.
|
|
CHANG R Y, YANG H B. Research on crop pest identification based on convolution neural network[J]. Wireless Internet technology, 2023, 19(2): 159-161.
|
12 |
陈天娇, 曾娟, 谢成军, 等. 基于深度学习的病虫害智能化识别系统[J]. 中国植保导刊, 2019, 39(4): 26-34.
|
|
CHEN T J, ZENG J, XIE C J, et al. Intelligent identification system of disease and insect pests based on deep learning[J]. China plant protection, 2019, 39(4): 26-34.
|
13 |
陶治, 孔建磊, 金学波, 等. 基于深度学习的农作物病虫害图像识别App系统设计[J]. 计算机应用与软件, 2022, 39(3): 341-345.
|
|
TAO Z, KONG J L, JIN X B, et al. Design of image recognition App system for crop diseases and insect pests based on deep learning[J]. Computer applications and software, 2022, 39(3): 341-345.
|
14 |
周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的西红柿叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56.
|
|
ZHOU Q L, MA L, CAO L Y, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3[J]. Smart agriculture, 2022, 4(1): 47-56.
|
15 |
龚荣新, 鲁向晖, 张海娜, 等. 基于高光谱植被指数的大豆地上部生物量估算模型研究[J]. 大豆科学, 2023, 42(3): 352-359.
|
|
GONG R X, LU X H, ZHANG H N, et al. Study on aboveground biomass estimation model of soybean based on hyperspectral vegetation index[J]. Soybean science, 2023, 42(3): 352-359.
|
16 |
SCHNEIDER S, TAYLOR G W, KREMER S C, et al. Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision[J]. Methods in ecology and evolution, 2022, 13(2): 346-357.
|
17 |
ZHENG C W, ABD-ELRAHMAN A, WHITAKER V M, et al. Deep learning for strawberry canopy delineation and biomass prediction from high-resolution images[J]. Plant phenomics, 2022, 2022: ID 9850486.
|
18 |
卜灵心, 来全, 刘心怡. 不同机器学习算法在草原草地生物量估算上的适应性研究[J]. 草地学报, 2022, 30(11): 3156-3164.
|
|
BU L X, LAI Q, LIU X Y. Study on the adaptability of different machine learning algorithms for estimating the biomass of grassland[J]. Journal of grassland science, 2022, 30(11): 3156-3164.
|
19 |
陈占琦, 张玉安, 王文志, 等. 基于迁移学习的多尺度特征融合牦牛脸部识别算法[J]. 智慧农业(中英文), 2022, 4(2): 77-85.
|
|
CHEN Z Q, ZHANG Y A, WANG W Z, et al. Multiscale feature fusion yak face recognition algorithm based on transfer learning[J]. Smart agriculture, 2022, 4(2): 77-85.
|
20 |
HAIFA T, BAHRAM S, MASOUD M, et al. Comparison of machine and deep learning methods to estimate shrub willow biomass from UAS imagery[J]. Canadian journal of remote sensing, 2021, 47(2): 209-227.
|
21 |
朱俊宇. 基于深度学习压缩模型的沼虾表型数据测定研究[D]. 杭州: 浙江大学, 2022.
|
|
ZHU J Y. Research on phenotypic data determination of Macrobrachium prawn based on deep learning compression model[D]. Hangzhou: Zhejiang University, 2022.
|
22 |
袁德明. 基于深度学习的大豆表型测量方法研究[D]. 济南: 山东大学, 2021.
|
|
YUAN D M. Research on soybean phenotype measurement method based on deep learning[D]. Ji'nan: Shandong University, 2021.
|
23 |
赵鑫龙, 彭彦昆, 李永玉, 等. 基于深度学习的牛肉大理石花纹等级手机评价系统[J]. 农业工程学报, 2020, 36(13): 250-256.
|
|
ZHAO X L, PENG Y K, LI Y Y, et al. Mobile phone evaluation system for grading beef marbling based on deep learning[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(13): 250-256.
|
24 |
孟令峰, 朱荣光, 白宗秀, 等. 基于手机图像的不同贮藏时间下冷却羊肉的部位判别[J]. 食品科学, 2020, 41(23): 21-26.
|
|
MENG L F, ZHU R G, BAI Z X, et al. Discrimination of chilled lamb from different carcass parts at different storage times based on mobile phone images[J]. Food science, 2020, 41(23): 21-26.
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
|