1 |
吴初国, 王楠, 苏宇, 等. 基于安全、市场、民生视角的我国自然资源经济形势分析[J]. 中国矿业, 2024, 33( 7): 9- 15.
|
|
WU C G, WANG N, SU Y, et al. Analysis of natural resources economic situation in China from the perspectives of security, market, and people's livelihood[J]. China mining magazine, 2024, 33( 7): 9- 15.
|
2 |
许世卫, 刘子源, 张小允, 等. 俄乌冲突对中国农产品供需直接影响分析[J]. 农业展望, 2023, 19( 2): 3- 13.
|
|
XU S W, LIU Z Y, ZHANG X Y, et al. Analysis on the direct impact of Russia-Ukraine conflict on Chinese agricultural products supply and demand[J]. Agricultural outlook, 2023, 19( 2): 3- 13.
|
3 |
李勇, 李乾川, 周益. 消弥城乡“数字鸿沟”助力农业强国战略: 兼评国家数据局成立[J]. 农业大数据学报, 2023, 5( 1): 15- 17.
|
|
LI Y, LI Q C, ZHOU Y. Bridging the urban-rural 'digital gap' for agricultural powerhouse: On the establishment of national data bureau[J]. Journal of agricultural big data, 2023, 5( 1): 15- 17.
|
4 |
XU S W, LI G Q, LI Z M. China agricultural outlook for 2015–2024 based on China agricultural monitoring and early-warning system (CAMES)[J]. Journal of integrative agriculture, 2015, 14( 9): 1889- 1902.
|
5 |
李乾川, 许世卫, 张永恩, 等. 基于气象因素的玉米单产堆栈集成学习建模与预测[J]. 中国农业科学, 2024, 57( 4): 679- 697.
|
|
LI Q C, XU S W, ZHANG Y E, et al. Stacking ensemble learning modeling and forecasting of maize yield based on meteorological factors[J]. Scientia agricultura sinica, 2024, 57( 4): 679- 697.
|
6 |
王晓丽, 李乾川, 郭志杰, 等. 生物安全智能信息技术在畜牧业监管领域的应用研究与展望[J/OL]. 农业展望. ( 2024-12-19)[ 2025-01-02].
|
|
WANG X L, LI Q C, GUO Z J, et al. Application research and prospect of biosafety intelligent information technology in the field of animal husbandry supervision[J/OL]. Agricultural Outlook.( 2024-12-19)[ 2025-01-02].
|
7 |
赵春江. 农业知识智能服务技术综述[J]. 智慧农业(中英文), 2023, 5( 2): 126- 148.
|
|
ZHAO C J. Agricultural knowledge intelligent service technology: A review[J]. Smart agriculture, 2023, 5( 2): 126- 148.
|
8 |
LI Q C, XU S W, ZHUANG J Y, et al. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. Journal of integrative agriculture, 2023, 22( 6): 1909- 1927.
|
9 |
SUN C, PEI M, CAO B, et al. A study on agricultural commodity price prediction model based on secondary decomposition and long short-term memory network[J]. Agriculture, 2023, 14( 1): 60.
|
10 |
TARIQ U, AHMED I, KHAN M A, et al. Deep learning for economic transformation: A parametric review[J]. Indonesian journal of electrical engineering and computer science, 2024, 35( 1): 520- 541.
|
11 |
LIM B, ARIK S Ö, LOEFF N, et al. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting[J]. International journal of forecasting, 2021, 37( 4): 1748- 1764.
|
12 |
QU Z K, ZHANG Y, HONG C, et al. Temperature forecasting of grain in storage: A multi-output and spatiotemporal approach based on deep learning[J]. Computers and electronics in agriculture, 2023, 208: ID 107785.
|
13 |
AVINASH G, RAMASUBRAMANIAN V, RAY M, et al. Hidden Markov guided deep learning models for forecasting highly volatile agricultural commodity prices[J]. Applied soft computing, 2024, 158: ID 111557.
|
14 |
ZHU Y M, WANG M, YIN X F, et al. Deep learning in diverse intelligent sensor based systems[J]. Sensors, 2023, 23( 1): ID 62.
|
15 |
郭惠萍, 曹亚州, 王晨思, 等. 基于迁移学习的苹果落叶病识别与应用[J]. 农业工程学报, 2024, 40( 3): 184- 192.
|
|
GUO H P, CAO Y Z, WANG C S, et al. Recognition and application of apple defoliation disease based on transfer learning[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40( 3): 184- 192.
|
16 |
庄家煜, 许世卫, 李杨, 等. 基于深度学习的多种农产品供需预测模型[J]. 智慧农业(中英文), 2022, 4( 2): 174- 182.
|
|
ZHUANG J Y, XU S W, LI Y, et al. Supply and demand forecasting model of multi-agricultural products based on deep learning[J]. Smart agriculture, 2022, 4( 2): 174- 182.
|
17 |
王润周, 张新生, 王明虎. 基于信号分解和深度学习的农产品价格预测[J]. 农业工程学报, 2022, 38( 24): 256- 267.
|
|
WANG R Z, ZHANG X S, WANG M H. Agricultural product price prediction based on signal decomposition and deep learning[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38( 24): 256- 267.
|
18 |
WANG Y L, HUANG G, SONG S J, et al. Regularizing deep networks with semantic data augmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2021( 7): 3733- 3748.
|
19 |
李乾川. 基于气象因素的作物单产集成学习预测方法研究与应用[D]. 北京: 中国农业科学院, 2024.
|
|
LI Q C. Research and application of ensemble learning prediction method for crop yield based on meteorological factors[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024.
|
20 |
HUANG Y C, CHEN Z G, LIU J M. Limited agricultural spectral dataset expansion based on generative adversarial networks[J]. Computers and electronics in agriculture, 2023, 215: ID 108385.
|
21 |
ZHUANG J Y, XU S W, LI G Q, et al. The influence of meteorological factors on wheat and rice yields in China[J]. Crop science, 2018, 58( 3): 1440- 1445.
|
22 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63( 11): 139- 144.
|
23 |
吴华瑞. 基于深度残差网络的番茄叶片病害识别方法[J]. 智慧农业, 2019, 1( 4): 42- 49.
|
|
WU H R. Method of tomato leaf diseases recognition method based on deep residual network[J]. Smart agriculture, 2019, 1( 4): 42- 49.
|
24 |
KINGMA D P, BA J, HAMMAD M M. Adam: A method for stochastic optimization[EB/OL]. arXiv: 1412.6980, 2014.
|
25 |
RAZGHANDI M, ZHOU H, EROL-KANTARCI M, et al. Variational autoencoder generative adversarial network for synthetic data generation in smart home[C]// ICC 2022 - IEEE International Conference on Communications. Piscataway, New Jersey, USA: IEEE, 2022.
|
26 |
YILDIRIM H, REVAN ÖZKALE M. The performance of ELM based ridge regression via the regularization parameters[J]. Expert systems with applications, 2019, 134: 225- 233.
|
27 |
HE X H, LI C Y, ZHANG P C, et al. Parameter-efficient model adaptation for vision transformers[J]. Proceedings of the AAAI conference on artificial intelligence, 2023, 37( 1): 817- 825.
|
28 |
LE T T H, KIM H, KANG H, et al. Classification and explanation for intrusion detection system based on ensemble trees and SHAP method[J]. Sensors, 2022, 22( 3): ID 1154.
|
29 |
FENG D C, WANG W J, MANGALATHU S, et al. Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls[J]. Journal of structural engineering, 2021, 147( 11): ID 4021173.
|
30 |
贾宁, 郑纯军. 基于LSTM-DA神经网络的农产品价格指数短期预测模型[J]. 计算机科学, 2019, 46( S2): 62- 65, 71.
|
|
JIA N, ZHENG C J. Short-term forecasting model of agricultural product price index based on LSTM-DA neural network[J]. Computer science, 2019, 46( S2): 62- 65, 71.
|