1 |
田有文, 程怡, 王小奇, 等. 基于高光谱成像的苹果虫害检测特征向量的选取[J]. 农业工程学报, 2014, 30(12): 132-139.
|
|
TIAN Y W, CHENG Y, WANG X Q, et al. Feature vectors determination for pest detection on apples based on hyperspectral imaging[J]. Transactions of the Chinese society of agricultural engineering, 2014, 30(12): 132-139.
|
2 |
WANG Y, WANG Y, ZHAO J. MGA-YOLO: A lightweight one-stage network for apple leaf disease detection[J]. Frontiers in plant science, 2022, 13: ID 927424.
|
3 |
王帅, 王利众, 朱丽平, 等. 基于改进YOLOv5s的苹果病害检测技术研究[J]. 山西农业大学学报(自然科学版), 2024, 44(4): 118-129.
|
|
WANG S, WANG L Z, ZHU L P, et al. Research on apple disease detection technology based on improved YOLOv5s[J]. Journal of Shanxi agricultural university (natural science edition), 2024, 44(4): 118-129.
|
4 |
王君婵, 洪俐, 朱少龙, 等. 基于深度学习的病害识别方法研究[J]. 农业展望, 2023, 19(8): 90-99.
|
|
WANG J C, HONG L, ZHU S L, et al. Research on disease recognition method based on deep learning[J]. Agricultural outlook, 2023, 19(8): 90-99.
|
5 |
YANG R T, HE Y B, HU Z W, et al. CA-YOLOv5: A YOLO model for apple detection in the natural environment[J]. Systems science & control engineering, 2024, 12(1): ID 2278905.
|
6 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19.
|
7 |
ZHANG S W, WANG D W, YU C Q. Apple leaf disease recognition method based on Siamese dilated Inception network with less training samples[J]. Computers and electronics in agriculture, 2023, 213: ID 108188.
|
8 |
ZHU R, ZOU H, LI Z, et al. Apple-net: A model based on improved YOLOv5 to detect the apple leaf diseases[J]. Plants (basel, Switzerland), 2022, 12(1): ID 169.
|
9 |
LIU H F, PENG P, CHEN T, et al. FECANet: Boosting few-shot semantic segmentation with feature-enhanced context-aware network[J]. IEEE transactions on multimedia, 2023, 25: 8580-8592.
|
10 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13713-13722.
|
11 |
MATHEW M P, MAHESH T Y. Determining the region of apple leaf affected by disease using YOLOv3[C]// 2021 International conference on communication, control and information sciences (ICCISc). Piscataway, New Jersey, USA: IEEE, 2021, 1: 1-4.
|
12 |
LIU B, HUANG X L, SUN L M, et al. MCDCNet: Multi-scale constrained deformable convolution network for apple leaf disease detection[J]. Computers and electronics in agriculture, 2024, 222: ID 109028.
|
13 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13733-13742.
|
14 |
JIAO J Y, TANG Y M, LIN K Y, et al. DilateFormer: Multi-scale dilated transformer for visual recognition[J]. IEEE transactions on multimedia, 2023, 25: 8906-8919.
|
15 |
SUNKARA R, LUO T. No more strided convolutions or Pooling: A new CNN building block for Low-resolution images and Small objects[M]// Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023: 443-459.
|
16 |
陆丽娜, 于啸. 深度学习在大豆叶片图像数据管理中的识别与分类研究[J].农业图书情报学报,2023,35(2):87-94.
|
|
LU L N, YU X. Recognition and classification of deep learning in soybean leaf image data management[J]. Journal of library and information science in agriculture, 2023, 35(2): 87-94.
|
17 |
CAI D L, ZHANG Z Y, ZHANG Z. Corner-point and foreground-area IoU loss: Better localization of small objects in bounding box regression[J]. Sensors, 2023, 23(10): ID 4961.
|
18 |
SHEPLEY A J, FALZON G, KWAN P, et al. Confluence: A robust non-IoU alternative to non-maxima suppression in object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(10): 11561-11574.
|
19 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464-7475.
|
20 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: Learning what you want to learn using programmable gradient information[EB/OL]. arXiv: 2402.13616, 2024.
|
21 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2980-2988.
|
22 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
23 |
石展鲲, 杨风, 韩建宁, 等. 基于Faster-RCNN的自然环境下苹果识别[J]. 计算机与现代化, 2023(2): 62-65.
|
|
SHI Z K, YANG F, HAN J N, et al. Apples recognition in natural environment based on Faster-RCNN[J]. Computer and modernization, 2023(2): 62-65.
|
24 |
ZHANG Y K, ZHOU G X, CHEN A B, et al. A precise apple leaf diseases detection using BCTNet under unconstrained environments[J]. Computers and electronics in agriculture, 2023, 212: ID 108132.
|
25 |
杨锋, 姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型[J].智慧农业(中英文), 2024, 6(1): 147-157.
|
|
YANG Feng, YAO Xiaotong. Lightweighted wheat leaf diseases and pests detection model based on improved YOLOv8[J]. Smart agriculture, 2024, 6(1): 147-157.
|
26 |
郑宇达, 陈仁凡, 杨长才, 等. 基于改进YOLOv5s模型的柑橘病虫害识别方法[J]. 华中农业大学学报, 2024, 43(2): 134-143.
|
|
ZHENG Y D, CHEN R F, YANG C C, et al. Improved YOLOv5s based identification of pests and diseases in citrus[J]. Journal of Huazhong agricultural university, 2024, 43(2): 134-143.
|
27 |
陈禹, 吴雪梅, 张珍, 等. 基于改进YOLOv5s的自然环境下茶叶病害识别方法[J]. 农业工程学报, 2023, 39(24): 185-194.
|
|
CHEN Y, WU X M, ZHANG Z, et al. Method for identifying tea diseases in natural environment using improved YOLOv5s[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(24): 185-194.
|