1 |
宋智芳. 伊犁绢蒿荒漠草地植被特征对放牧干扰的响应[D]. 乌鲁木齐: 新疆农业大学, 2018.
|
|
SONG Z F. Response of Seriphidium transiliense vegetation characteristics to grazing disturance in desert grasslands[D]. Urumqi: Xinjiang Agricultural University, 2018.
|
2 |
滕迎凤. 宁夏沙湖自然保护区植物多样性研究[D]. 银川: 宁夏大学, 2013.
|
|
TENG Y F. Studies on diversity of the plants in Shahu nature reserve, Ningxia, China[D]. Yinchuan: Ningxia University, 2013.
|
3 |
燕辉. 西北旱区两种典型沙生植物对盐胁迫响应的研究[D]. 杨凌: 西北农林科技大学, 2012.
|
|
YAN H. The response of two representative desert shrubs to salt stress in northwest arid region[D]. Yangling: Northwest A & F University, 2012.
|
4 |
何恒斌. 沙冬青群落及其根瘤菌的研究[D]. 北京: 北京林业大学, 2008.
|
|
HE H B. Studies on communities and rhizoibum of Ammopiptanthus mongolicus (maxim.)[D]. Beijing: Beijing Forestry University, 2008.
|
5 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
6 |
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, Massachusetts: The MIT Press, 2016.
|
7 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
8 |
JEON W S, RHEE S Y. Plant leaf recognition using a convolution neural network[J]. The international journal of fuzzy logic and intelligent systems, 2017, 17(1): 26-34.
|
9 |
LEE S H, CHAN C S, WILKIN P, et al. Deep-plant: Plant identification with convolutional neural networks[C]// 2015 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE, 2015: 452-456.
|
10 |
韩斌, 曾松伟. 基于多特征融合和卷积神经网络的植物叶片识别[J]. 计算机科学, 2021, 48(S1): 113-117.
|
|
HAN B, ZENG S W. Plant leaf image recognition based on multi-feature integration and convolutional neural network[J]. Computer science, 2021, 48(S1): 113-117.
|
11 |
金莉婷. 基于卷积神经网络的复杂背景植物图像识别研究[D]. 兰州: 兰州交通大学, 2020.
|
|
JIN L T. Research on plant image recognition with complex background based on convolution neural network[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
|
12 |
冯海林, 胡明越, 杨垠晖, 等. 基于树木整体图像和集成迁移学习的树种识别[J]. 农业机械学报, 2019, 50(8): 235-242, 279.
|
|
FENG H L, HU M Y, YANG Y H, et al. Tree species recognition based on overall tree image and ensemble of transfer learning[J]. Transactions of the Chinese society for agricultural machinery, 2019, 50(8): 235-242, 279.
|
13 |
宋晓宇, 金莉婷, 赵阳, 等. 基于有效区域筛选的复杂背景植物图像识别方法[J]. 激光与光电子学进展, 2020, 57(4): 181-191.
|
|
SONG X Y, JIN L T, ZHAO Y, et al. Plant image recognition with complex background based on effective region screening[J]. Laser & optoelectronics progress, 2020, 57(4): 181-191.
|
14 |
ZHOU J, LI J X, WANG C S, et al. A vegetable disease recognition model for complex background based on region proposal and progressive learning[J]. Computers and electronics in agriculture, 2021, 184: ID 106101.
|
15 |
LI J C, SUN S D, JIANG H R, et al. Image recognition and empirical application of desert plant species based on convolutional neural network[J]. Journal of arid land, 2022, 14(12): 1440-1455.
|
16 |
曹香滢, 孙卫民, 朱悠翔, 等. 基于科优先策略的植物图像识别[J]. 计算机应用, 2018, 38(11): 3241-3245.
|
|
CAO X Y, SUN W M, ZHU Y X, et al. Plant image recoginiton based on family priority strategy[J]. Journal of computer applications, 2018, 38(11): 3241-3245.
|
17 |
郭晓丽. 基于全卷积神经网络的植物图像分割算法研究与实现[D]. 呼和浩特: 内蒙古大学, 2021.
|
|
GUO X L. Research and implementation on plant image segementation algorithm based on neural network[D]. Hohhot: Inner Mongolia University, 2021.
|
18 |
RAGHU M, POOLE B, KLEINBERG J, et al. On the expressive power of deep neural networks[C]// Proceedings of the 34th International Conference on Machine Learning -Volume 70. New York, USA: ACM, 2017: 2847-2854.
|
19 |
ZAGORUYKO S, KOMODAKIS N. Wide residual networks[EB/OL]. arXiv: , 2016.
|
20 |
TAN M, LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. International conference on machine learning. arXiv:, 2019.
|
21 |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
|
22 |
DONG X B, YU Z W, CAO W M, et al. A survey on ensemble learning[J]. Frontiers of computer science, 2020, 14(2): 241-258.
|
23 |
WANG B, PINEAU J. Online bagging and boosting for imbalanced data streams[J]. IEEE transactions on knowledge and data engineering, 2016, 28(12): 3353-3366.
|
24 |
HUI Y, MEI X S, JIANG G D, et al. Milling tool wear state recognition by vibration signal using a stacked generalization ensemble model[J]. Shock and vibration, 2019, 2019: 1-16.
|
25 |
ANDIOJAYA A, DEMIRHAN H. A bagging algorithm for the imputation of missing values in time series[J]. Expert systems with applications, 2019, 129: 10-26.
|
26 |
FIELDING A H, BELL J F. A review of methods for the assessment of prediction errors in conservation presence/absence models[J]. Environmental conservation, 1997, 24(1): 38-49.
|
27 |
高宏元, 高新华, 冯琦胜, 等. 基于深度学习的天然草地植物物种识别方法[J]. 草业科学, 2020, 37(9): 1931-1939.
|
|
GAO H Y, GAO X H, FENG Q S, et al. Approach to plant species identification in natural grasslands based on deep learning[J]. Pratacultural science, 2020, 37(9): 1931-1939.
|
28 |
彭文, 兰玉彬, 岳学军, 等. 基于深度卷积神经网络的水稻田杂草识别研究[J]. 华南农业大学学报, 2020, 41(6): 75-81.
|
|
PENG W, LAN Y B, YUE X J, et al. Research on paddy weed recognition based on deep convolutional neural network[J]. Journal of South China agricultural university, 2020, 41(6): 75-81.
|
29 |
陈淑君, 周永霞, 方勇军. 基于整体外观特征的植物种类识别研究[J]. 计算机应用与软件, 2017, 34(9): 222-227.
|
|
CHEN S J, ZHOU Y X, FANG Y J. The plant species recognition based on the whole appearanc features[J]. Computer applications and software, 2017, 34(9): 222-227.
|