1 |
中华人民共和国国家统计局. 国家数据[EB/OL]. (2021-12-06)[2023-01-29].
|
2 |
FLORES Paulo, 张昭. 基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测[J]. 智慧农业(中英文), 2021, 3(2): 23-34.
|
|
FLORES P, ZHANG Z. Wheat lodging ratio detection based on UAS imagery coupled with different machine learning and deep learning algorithms[J]. Smart agriculture, 2021, 3(2): 23-34.
|
3 |
GUAN H X, HUANG J X, LI L, et al. A novel approach to estimate maize lodging area with PolSAR data[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-17.
|
4 |
SINGH D, WANG X, KUMAR U, et al. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat[J]. Frontiers in plant science, 2019, 10: ID 394.
|
5 |
韩东, 杨浩, 杨贵军, 等. 基于Sentinel-1雷达影像的玉米倒伏监测模型[J]. 农业工程学报, 2018, 34(3): 166-172.
|
|
HAN D, YANG H, YANG G J, et al. Monitoring model of maize lodging based on Sentinel-1 radar image[J]. Transactions of the Chinese society of agricultural engineering, 2018, 34(3): 166-172.
|
6 |
WANG J J, GE H, DAI Q G, et al. Unsupervised discrimination between lodged and non-lodged winter wheat: A case study using a low-cost unmanned aerial vehicle[J]. International journal of remote sensing, 2018, 39(8): 2079-2088.
|
7 |
HUANG X D, XUAN F, DONG Y, et al. Identifying corn lodging in the mature period using Chinese GF-1 PMS images[J]. Remote sensing, 2023, 15(4): ID 894.
|
8 |
CHAUHAN S, DARVISHZADEH R, BOSCHETTI M, et al. Remote sensing-based crop lodging assessment: Current status and perspectives[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 151: 124-140.
|
9 |
李宗南, 陈仲新, 任国业, 等. 基于Worldview-2影像的玉米倒伏面积估算[J]. 农业工程学报, 2016, 32(2): 1-5.
|
|
LI Z N, CHEN Z X, REN G Y, et al. Estimation of maize lodging area based on Worldview-2 image[J]. Transactions of the Chinese society of agricultural engineering, 2016, 32(2): 1-5.
|
10 |
YANG H, CHEN E X, LI Z Y, et al. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data[J]. International journal of applied earth observation and geoinformation, 2015, 34: 157-166.
|
11 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2022: 9992-10002.
|
12 |
HE X, ZHOU Y, ZHAO J Q, et al. Swin transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-15.
|
13 |
XU Y F, ZHOU S B, HUANG Y H. Transformer-based model with dynamic attention pyramid head for semantic segmentation of VHR remote sensing imagery[J]. Entropy, 2022, 24(11): ID 1619.
|
14 |
KOH J C O, SPANGENBERG G, KANT S. Automated machine learning for high-throughput image-based plant phenotyping[J]. Remote sensing, 2021, 13(5): ID 858.
|
15 |
ZHAO X, YUAN Y T, SONG M D, et al. Use of unmanned aerial vehicle imagery and deep learning UNet to extract rice lodging[J]. Sensors, 2019, 19(18): ID 3859.
|
16 |
YANG M D, TSENG H H, HSU Y C, et al. Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images[J]. Remote sensing, 2020, 12(4): ID 633.
|
17 |
ZHAO J L, LI Z, LEI Y, et al. Application of UAV RGB images and improved PSPNet network to the identification of wheat lodging areas[J]. Agronomy, 2023, 13(5): ID 1309.
|
18 |
ZHANG D Y, DING Y, CHEN P F, et al. Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network[J]. Computers and electronics in agriculture, 2020, 179: ID 105845.
|
19 |
YU J, CHENG T, CAI N, et al. Wheat lodging extraction using Improved_Unet network[J]. Frontiers in plant science, 2022, 13: ID 1009835.
|
20 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, German: Springer, 2015: 234-241.
|
21 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. arXiv: 1706.05587, 2017.
|
22 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[EB/OL]. arXiv: 2103.14030, 2021.
|
23 |
ZHANG G, YAN H F, ZHANG D Y, et al. Enhancing model performance in detecting lodging areas in wheat fields using UAV RGB Imagery: Considering spatial and temporal variations[J]. Computers and electronics in agriculture, 2023, 214: ID 108297.
|
24 |
LI X H, LI X Z, LIU W, et al. A UAV-based framework for crop lodging assessment[J]. European journal of agronomy, 2021, 123: ID 126201.
|
25 |
YANG M D, TSENG H H, HSU Y C, et al. Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images[J]. Remote sensing, 2020, 12(4): ID 633.
|
26 |
BISWAL S, CHATTERJEE C, MAILAPALLI D R. Damage assessment due to wheat lodging using UAV-based multispectral and thermal imageries[J]. Journal of the Indian society of remote sensing, 2023, 51(5): 935-948.
|
27 |
GAO L, LIU H, YANG M H, et al. STransFuse: Fusing swin transformer and convolutional neural network for remote sensing image semantic segmentation[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2021, 14: 10990-11003.
|
28 |
LIU T, LI R, ZHONG X C, et al. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images[J]. Agricultural and forest meteorology, 2018, 252: 144-154.
|
29 |
SONG Z S, ZHANG Z T, YANG S Q, et al. Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging[J]. Computers and electronics in agriculture, 2020, 179: ID 105812.
|
30 |
LI G A, HAN W T, HUANG S J, et al. Extraction of sunflower lodging information based on UAV multi-spectral remote sensing and deep learning[J]. Remote sensing, 2021, 13(14): ID 2721.
|
31 |
TIAN M L, BAN S T, YUAN T, et al. Assessing rice lodging using UAV visible and multispectral image[J]. International journal of remote sensing, 2021, 42(23): 8840-8857.
|