1 |
AQUILANI C, CONFESSORE A, BOZZI R, et al. Review: Precision livestock farming technologies in pasture-based livestock systems[J]. Animal, 2022, 16(1): ID 100429.
|
2 |
赵建敏, 李雪冬, 李宝山. 基于无人机图像的羊群密集计数算法研究[J]. 激光与光电子学进展, 2021, 58(22): ID 2210013.
|
|
ZHAO J M, LI X D, LI B S. Algorithm of sheep dense counting based on unmanned aerial vehicle images[J]. Laser & optoelectronics progress, 2021, 58(22): ID 2210013.
|
3 |
LI X H, HUANG H L, SAVKIN A, et al. Robotic herding of farm animals using a network of barking aerial drones[J]. Drones, 2022, 6(2): ID 29.
|
4 |
HERLIN A, BRUNBERG E, HULTGREN J, et al. Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture[J]. Animals: an open access journal from MDPI, 2021, 11(3): ID 829.
|
5 |
CORCORAN E, DENMAN S, HAMILTON G. Evaluating new technology for biodiversity monitoring: Are drone surveys biased?[J]. Ecology and evolution, 2021, 11(11): 6649-6656.
|
6 |
郭秀明, 诸叶平, 李世娟, 等. 农业复杂环境下尺度自适应小目标识别算法——以蜜蜂为研究对象[J]. 智慧农业(中英文), 2022, 4(1): 140-149.
|
|
GUO X M, ZHU Y P, LI S J, et al. Scale adaptive small objects detection method in complex agricultural environment: Taking bees as research object[J]. Smart agriculture, 2022, 4(1): 140-149.
|
7 |
MAKTAB DAR OGHAZ M, RAZAAK M, REMAGNINO P. Enhanced single shot small object detector for aerial imagery using super-resolution, feature fusion and deconvolution[J]. Sensors, 2022, 22(12): ID 4339.
|
8 |
ZHAO H K, MAO R, LI M, et al. SheepInst: A high-performance instance segmentation of sheep images based on deep learning[J]. Animals: An open access journal from MDPI, 2023, 13(8): ID 1338.
|
9 |
SARWAR F, GRIFFIN A, PERIASAMY P, et al. Detecting and counting sheep with a convolutional neural network[C]// 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway, New Jersey, USA: IEEE, 2018: 1-6.
|
10 |
WANG Y H, MA L L, WANG Q, et al. A lightweight and high-accuracy deep learning method for grassland grazing livestock detection using UAV imagery[J]. Remote sensing, 2023, 15(6): ID 1593.
|
11 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham, German: Springer, 2018: 3-19.
|
12 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7132-7141.
|
13 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13708-13717.
|
14 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 11531-11539.
|
15 |
Depthwise separable convolutions for machine learning[EB/OL]. Eli Bendersky. (2018-04-04)[2023-12-28].
|
16 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]// LEIBE B, MATAS J, SEBE N, et al, eds. Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
17 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2999-3007.
|
18 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
19 |
ZHANG Q L, YANG Y B. SA-net: Shuffle attention for deep convolutional neural networks[C]// ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, New Jersey, USA: IEEE, 2021: 2235-2239.
|
20 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464-7475.
|