1 | KAYAD A G, AL-GAADI K A, TOLA E, et al. Assessing the spatial variability of alfalfa yield using satellite imagery and ground-based data[J]. PLoS One, 2016, 11(6): ID e0157166. | 2 | 孙刚, 黄文江, 陈鹏飞, 等. 轻小型无人机多光谱遥感技术应用进展[J]. 农业机械学报, 2018, 49(3): 1-17. | 2 | SUN G, HUANG W, CHEN P, et al. Advances in UAV-based multispectral remote sensing applications[J]. Transactions of the CSAM, 2018, 49(3): 1-17. | 3 | 刘忠, 万炜, 黄晋宇, 等. 基于无人机遥感的农作物长势关键参数反演研究进展[J]. 农业工程学报, 2018, 34(24): 60-71. | 3 | LIU Z, WAN W, HUANG J, et al. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing[J]. Transactions of the CSAE, 2018, 34(24): 60-71. | 4 | 陈鹏飞. 无人机在农业中的应用现状与展望[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 399-406. | 4 | CHEN P. Applications and trends of unmanned aerial vehicle in agriculture[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 399-406. | 5 | 李宗南, 陈仲新, 王利民, 等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报, 2014, 30(19): 207-213. | 5 | LI Z, CHEN Z, WANG L, et al. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J]. Transactions of the CSAE, 2014, 30(19): 207-213. | 6 | 梁启章, 齐清文, 姜莉莉, 等. "粮经饲"种植结构优化方法与对弈式操作策略[J]. 中国农业信息, 2019, 31(2): 84-97. | 6 | LIANG Q, QI Q, JIANG L, et al. Optimization method of planting structure of "grain & economic & feed crop" and playing chess operation strategy of software platform[J]. China Agricultural Informatics, 2019, 31(2): 84-97. | 7 | 中华人民共和国农业农村部. "十四五"全国饲草产业发展规划[R]. 2022. | 8 | 王磊, 周建平, 许燕, 等. 农用无人机的应用现状与展望[J]. 农药, 2019, 58(9): 625-630, 634. | 8 | WANG L, ZHOU J, XU Y, et.al. Application status and prospect of agricultural UAV[J]. Agrochemicals, 2019, 58(9): 625-630, 534. | 9 | WANG H, MORTENSEN A K, MAO P, et al. Estimating the nitrogen nutrition index in grass seed crops using a UAV-mounted multispectral camera[J]. International Journal of Remote Sensing, 2019, 40(7): 2467-2482. | 10 | TAN S, MORTENSEN A K, MA X, et al. Assessment of grass lodging using texture and canopy height distribution features derived from UAV visual-band images[J]. Agricultural and Forest Meteorology, 2021, 308: ID 108541. | 11 | LUSSEM U, BOLTEN A, MENNE J, et al. Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices[J]. Journal of Applied Remote Sensing, 2019, 13(3): ID 034525. | 12 | SINDE-GONZáLEZ I, GIL-DOCAMPO M, ARZA-GARCíA M, et al. Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101: ID 102355. | 13 | GAO R, KONG Q, WANG H, et al. Diagnostic feed values of natural grasslands based on multispectral images acquired by small unmanned aerial vehicle[J]. Rangeland Ecology & Management, 2019, 72(6): 916-922. | 14 | D?PPER V, ROCHA A D, BERGER K, et al. Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: ID 102817. | 15 | 孙世泽, 汪传建, 尹小君, 等. 无人机多光谱影像的天然草地生物量估算[J]. 遥感学报, 2018, 22(5): 848-856. | 15 | SUN S, WANG C, YIN X, et al. Estimating aboveground biomass of natural grassland based on multispectral images of unmanned aerial vehicles[J]. Journal of Remote Sensing, 2018, 22(5): 848-856. | 16 | 汪传建, 江红红, 尹小君, 等. 基于GPS与无人机遥感反演草地生物量的放牧场利用强度评估[J]. 农业工程学报, 2018, 34(19): 82-87. | 16 | WANG C, JIANG H, YIN X, et al. Evaluation for natural grassland utilization intensity based on GPS and UAV remote sensing for grassland biomass inversion[J]. Transactions of the CSAE, 2018, 34(19): 82-87. | 17 | LOOTENS P, MAES W H, DE SWAEF T, et al. UAV-Based remote sensing for evaluation of drought tolerance in forage grasses[C]// Breeding in a World of Scarcity. Cham, German: Springer International Publishing, 2016: 111-116. | 18 | DE SWAEF T, MAES W H, APER J, et al. Applying RGB-and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses[J]. Remote Sensing, 2021, 13(1): ID 147. | 19 | 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业(中英文), 2019, 1(2): 1-19. | 19 | LAN Y, DENG X, ZENG G, et al. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing[J] Smart Agriculture, 2019, 1(2): 1-19. | 20 | BORRA-SERRANO I, DE SWAEF T, APER J, et al. Towards an objective evaluation of persistency of Lolium perenne swards using UAV imagery[J]. Euphytica, 2018, 214(8): 1-18. | 21 | 严海军, 卓越, 李茂娜, 等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测[J]. 农业工程学报, 2022, 38(11): 64-71. | 21 | YAN H, ZHUO Y, LI M, et al. Alfalfa yield prediction using machine learning and UAV multispectral remote sensing[J]. Transactions of the CSAE, 2022, 38(11): 64-71. | 22 | GEBREMEDHIN A, BADENHORST P, WANG J, et al. Development and validation of a model to combine NDVI and plant height for high-throughput phenotyping of herbage yield in a perennial ryegrass breeding program[J]. Remote Sensing, 2019, 11(21): ID 2494. | 23 | FENG L, ZHANG Z, MA Y, et al. Multitask learning of alfalfa nutritive value from UAV-based hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. | 24 | WIJESINGHA J, ASTOR T, SCHULZE-BRüNINGHOFF D, et al. Predicting forage quality of grasslands using UAV-borne imaging spectroscopy[J]. Remote Sensing, 2020, 12(1): ID 126. | 25 | BRENNER C, ZEEMAN M, BERNHARDT M, et al. Estimation of evapotranspiration of temperate grassland based on high-resolution thermal and visible range imagery from unmanned aerial systems[J]. International Journal of Remote Sensing, 2018, 39(15-16): 5141-5174. | 26 | ZHAO X, SU Y, HU T, et al. Analysis of UAV lidar information loss and its influence on the estimation accuracy of structural and functional traits in a meadow steppe[J]. Ecological Indicators, 2022, 135: ID 108515. | 27 | 万亮, 岑海燕, 朱姜蓬, 等. 基于纹理特征与植被指数融合的水稻含水量无人机遥感监测[J]. 智慧农业(中英文), 2020, 2(1): 58-67. | 27 | WAN L, CEN H, ZHU J, et al. Using fusion of texture features and vegetation indices from water concentration in rice crop to UAV remote sensing monitor[J]. Smart Agriculture, 2020, 2(1): 58-67. | 28 | 韩文霆, 彭星硕, 张立元, 等. 基于多时相无人机遥感植被指数的夏玉米产量估算[J]. 农业机械学报, 2020, 51(1): 148-155. | 28 | HAN W, PENG X, ZHANG L, et al. Summer maize yield estimation based on vegetation index derived from multi-temporal UAV remote sensing[J]. Transactions of the CSAM, 2020, 51(1): 148-155. | 29 | YANG Q, SHI L, HAN J, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images[J]. Field Crops Research, 2019, 235: 142-153. | 30 | SONG Z, ZHANG Z, YANG S, et al. Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging[J]. Computers and Electronics in Agriculture, 2020, 179: ID 105812. | 31 | 于堃, 单捷, 王志明, 等. 无人机遥感技术在小尺度土地利用现状动态监测中的应用[J]. 江苏农业学报, 2019, 35(4): 853-859. | 31 | YU K, SHAN J, WANG Z, et al. Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(4): 853-859. | 32 | 韩峰, 刘昭, 刘伟, 等. 重叠度对无人机图像拼接效率的影响[J]. 江苏农业科学, 2017, 45(12): 182-187. | 32 | HAN F, LIU Z, LIU W, et al. Effect of overlap on image mosaic efficiency of UAV[J]. Jiangsu Agricultural Sciences, 2017, 45(12): 182-187. | 33 | LóPEZ-CALDERóN M J, ESTRADA-áVALOS J, RODRíGUEZ-MORENO V M, et al. Estimation of total nitrogen content in forage maize (Zea mays L.) using spectral indices: Analysis by random forest[J]. Agriculture, 2020, 10(10): ID 451. | 34 | 张正健, 李爱农, 边金虎, 等. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62. | 34 | ZHANG Z, LI A, BIAN J, et al. Estimating aboveground biomass of grassland in Zoige by visible vegetation index derived from unmanned aerial vehicle image[J]. Remote Sensing Technology and Application, 2016, 31(1): 51-62. | 35 | 郭庆华, 吴芳芳, 胡天宇, 等. 无人机在生物多样性遥感监测中的应用现状与展望[J]. 生物多样性, 2016, 24(11): 1267-1278. | 35 | GUO Q, WU F, HU T, et al. Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity[J]. Biodiversity Science, 2016, 24(11):1267-1278. | 36 | ALVAREZ-HESS P, THOMSON A, KARUNARATNE S, et al. Using multispectral data from an unmanned aerial system to estimate pasture depletion during grazing[J]. Animal Feed Science and Technology, 2021, 275: ID 114880. | 37 | 高林, 杨贵军, 王宝山, 等. 基于无人机遥感影像的大豆叶面积指数反演研究[J]. 中国生态农业学报, 2015, 23(7): 868-876. | 37 | GAO L, YANG G, WANG B, et al. Soybean leaf area index retrieval with UAV (unmanned aerial vehicle) remote sensing imagery[J]. Chinese Journal of Eco-Agriculture, 2015, 23(7): 868-876. | 38 | 郭庆华, 胡天宇, 刘瑾, 等. 轻小型无人机遥感及其行业应用进展[J]. 地理科学进展, 2021, 40(9): 1550-1569. | 38 | GUO Q, HU T, LIU J, et al. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications[J]. Progress in Geography, 2021, 40(9): 1550-1569. | 39 | 陈鹏飞, 徐新刚. 无人机影像拼接软件在农业中应用的比较研究[J]. 作物学报, 2020, 46(7): 1112-1119. | 39 | CHEN P, XU X. A comparison of photogrammetric software packages for mosaicking unmanned aerial vehicle (UAV) images in agricultural application[J]. Acta Agronomica Sinica, 2020, 46(7): 1112-1119. | 40 | ZHANG X, BAO Y, WANG D, et al. Using UAV LiDAR to extract vegetation parameters of inner mongolian grassland[J]. Remote Sensing, 2021, 13(4): ID 656. | 41 | N?SI R, VILJANEN N, KAIVOSOJA J, et al. Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features[J]. Remote Sensing, 2018, 10(7): ID 1082. | 42 | 赵健赟, 丁圆圆, 杜梅, 等. 基于无人机与机器学习的黄河源高寒草地植被覆盖度反演技术[J]. 科学技术与工程, 2021, 21(24): 10209-10214. | 42 | ZHAO J, DING Y, DU M, et al. Vegetation coverage inversion of alpine grassland in the source of the Yellow River based on unmanned aerial vehicle and machine learning[J]. Science Technology and Engineering, 2021, 21(24): 10209-10214. | 43 | 刘轲, 周清波, 吴文斌, 等. 基于多光谱与高光谱遥感数据的冬小麦叶面积指数反演比较[J]. 农业工程学报, 2016, 32(3): 155-162. | 43 | LIU K, ZHOU Q, WU W, et al. Comparison between multispectral and hyperspectral remote sensing for LAI estimation[J]. Transactions of the CSAE, 2016, 32(3): 155-162. | 44 | 江海英, 柴琳娜, 贾坤, 等. 联合PROSAIL模型和植被水分指数的低矮植被含水量估算[J]. 遥感学报, 2021, 25(4): 1025-1036. | 44 | JIANG H, CHAI L, JIA K, et al. Estimation of water content for short vegetation based on PROSAIL model and vegetation water indices[J]. National Remote Sensing Bulletin, 2021, 25(4): 1025-1036. | 45 | 雷莉, 徐伟洲, 贾雨真, 等. 氮、磷、钾配施对榆林沙地紫花苜蓿性状、产量和营养品质的影响[J]. 饲料研究, 2021, 44(19): 116-120. | 45 | LEI L, XU W, JIA Y, et al. Effects of nitrogen, phosphorus and potassium combined application on character, yield and nutritional quality of alfalfa in Yulin sandy land[J]. Feed Research, 2021, 44(19): 116-120. | 46 | FRICKE T, WACHENDORF M. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume-grass swards[J]. Computers and Electronics in Agriculture, 2013, 99: 236-247. | 47 | LI F, PIASECKI C, MILLWOOD R J, et al. High-throughput switchgrass phenotyping and biomass modeling by UAV[J]. Frontiers in Plant Science, 2020, 11: ID 574073. | 48 | GRüNER E, ASTOR T, WACHENDORF M. Biomass prediction of heterogeneous temperate grasslands using an SFM approach based on UAV imaging[J]. Agronomy, 2019, 9(2): ID 54. | 49 | BATISTOTI J, MARCATO JUNIOR J, íTAVO L, et al. Estimating pasture biomass and canopy height in Brazilian savanna using UAV photogrammetry[J]. Remote Sensing, 2019, 11(20): ID 2447. | 50 | FORSMOO J, ANDERSON K, MACLEOD C J, et al. Drone-based structure-from-motion photogrammetry captures grassland sward height variability[J]. Journal of Applied Ecology, 2018, 55(6): 2587-2599. | 51 | 康孝岩, 张爱武, 庞海洋. 基于光谱重建优化的无人机高光谱影像估算牧草生物量[J]. 光谱学与光谱分析, 2021, 41(1): 250-256. | 51 | KANG X, ZHANG A, PANG H. Estimation of grassland aboveground biomass from uav-mounted hyperspectral image by optimized spectral reconstruction[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 250-256. | 52 | FENG L, ZHANG Z, MA Y, et al. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning[J]. Remote Sensing, 2020, 12(12): ID 2028. | 53 | 苗春丽, 伏帅, 刘洁, 等. 基于UAV成像高光谱图像的高寒草甸地上生物量——以海北试验区为例[J]. 草业科学, 2022, 39(10): 1992-2004. | 53 | MIAO C, FU S, LIU J, et al. Aboveground biomass analysis of an alpine meadow based on unmanned aerial vehicle hyperspectral images in the Haibei pilot area[J]. Pratacultural Science, 2022, 39(10):1992-2004. | 54 | VILJANEN N, HONKAVAARA E, N?SI R, et al. A novel machine learning method for estimating biomass of grass swards using a photogrammetric canopy height model, images and vegetation indices captured by a drone[J]. Agriculture, 2018, 8(5): ID 70. | 55 | 刘兴元, 冯琦胜, 梁天刚, 等. 甘南牧区草地生产力与载畜量时空动态平衡研究[J]. 中国草地学报, 2010, 32(1): 99-106. | 55 | LIU X, FENG Q, LIANG T, et al. Spatial-temporal dynamic balance between livestock carrying capacity and productivity of rangeland in Gannan of Gansu province, China[J]. Chinese Journal of Grassland, 2010, 32(1): 99-106. | 56 | BARETH G, SCHELLBERG J. Replacing manual rising plate meter measurements with low-cost UAV-derived sward height data in grasslands for spatial monitoring[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, 86(3): 157-168. | 57 | DVORAK J S, PAMPOLINI L F, JACKSON J J, et al. Predicting quality and yield of growing alfalfa from a UAV[J]. Transactions of the ASABE, 2021, 64(1): 63-72. | 58 | FAN X, KAWAMURA K, XUAN T D, et al. Low‐cost visible and near‐infrared camera on an unmanned aerial vehicle for assessing the herbage biomass and leaf area index in an Italian ryegrass field[J]. Grassland Science, 2018, 64(2): 145-150. | 59 | 卢欣石. 2020我国饲草商品生产形势分析与2021年展望[J]. 畜牧产业, 2021, (3): 31-36. | 59 | LU X. Analysis of the forage commodity production situation in China in 2020 and outlook for 2021[J]. Animal Agriculture, 2021, (3): 31-36. | 60 | 张英俊. 我国饲草作物的产业发展[J]. 中国乳业, 2019, (4): 3-9. | 60 | ZHANG Y. Industrial development of forage crops in China[J]. China Dairy, 2019, (4): 3-9. | 61 | 刘艳慧, 蔡宗磊, 包妮沙, 等. 基于无人机大样方草地植被覆盖度及生物量估算方法研究[J]. 生态环境学报, 2018, 27(11): 2023-2032. | 61 | LIU Y, CAI Z, BAO N, et al. Research of grassland vegetation coverage and biomass estimation method based on major quadrat from UAV photogrammetry[J]. Ecology and Environmental Sciences, 2018, 27(11): 2023-2032. | 62 | 于惠, 吴玉锋, 牛莉婷. 基于无人机可见光图像的荒漠草地覆盖度估算[J]. 草业科学, 2021, 38(8): 1432-1438. | 62 | YU H, WU Y, NIU L. Estimation of vegetation coverage of desert grassland based on images from an unmanned aerial vehicle[J]. Pratacultural Science, 2021, 38(8): 1432-1438. | 63 | 伏帅, 张勇辉, 李佳吕, 等. 不同植被指数和无人机航高对草地盖度估测精度的影响[J]. 草业科学, 2021, 38(1): 11-19. | 63 | FU S, ZHANG Y, LI J, et al. Influence of different vegetation indices and heights of UAVs on the accuracy of grassland coverage estimation[J]. Pratacultural Science, 2021, 38(1): 11-19. | 64 | SHI Y, GAO J, LI X, et al. Improved estimation of aboveground biomass of disturbed grassland through including bare ground and grazing intensity[J]. Remote Sensing, 2021, 13(11): ID 2105. | 65 | CASTRO W, MARCATO JUNIOR J, POLIDORO C, et al. Deep learning applied to phenotyping of biomass in forages with UAV-based RGB imagery[J]. Sensors, 2020, 20(17): ID 4802. | 66 | MINCH C, DVORAK J S, JACKSON J, et al. Creating a field-wide forage canopy model using UAVs and photogrammetry processing[J]. Remote Sensing, 2021, 13(13): ID 2487. | 67 | DIMAGGIO A M, PEROTTO-BALDIVIESO H L, WALTHER C, et al. A pilot study to estimate forage mass from unmanned aerial vehicles in a semi-arid rangeland[J]. Remote Sensing, 2020, 12(15): ID 2431. | 68 | CATUREGLI L, GAETANI M, VOLTERRANI M, et al. Normalized difference vegetation index versus dark green colour index to estimate nitrogen status on bermudagrass hybrid and tall fescue[J]. International Journal of Remote Sensing, 2020, 41(2): 455-470. | 69 | ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring the vernal advancement of retrogradation of natural vegetation[R]. NASA/GSFC Type III Final Report, Greenbelt, MD, 1973. | 70 | GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298. | 71 | CAZENAVE A, SHAH K, TRAMMELL T, et al. High-throughput approaches for phenotyping alfalfa germplasm under abiotic stress in the field[J]. The Plant Phenome Journal, 2019, 2(1): 1-13. | 72 | BISWAS A, ANDRADE M H M L, ACHARYA J P, et al. Phenomics-Assisted selection for herbage accumulation in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science, 2021, 12: ID 756768. | 73 | FAN X, KAWAMURA K, XUAN T D, et al. Low-cost visible and near-infrared camera on an unmanned aerial vehicle for assessing the herbage biomass and leaf area index in an Italian ryegrass field[J]. Grassland Science, 2018, 64(2): 145-150. | 74 | THéAU J, LAUZIER-HUDON é, AUBé L, et al. Estimation of forage biomass and vegetation cover in grasslands using UAV imagery[J]. PLoS One, 2021, 16(1): ID e0245784. | 75 | KARUNARATNE S, THOMSON A, MORSE-MCNABB E, et al. The fusion of spectral and structural datasets derived from an airborne multispectral sensor for estimation of pasture dry matter yield at paddock scale with time[J]. Remote Sensing, 2020, 12(12): ID 2017. | 76 | PRANGA J, BORRA-SERRANO I, APER J, et al. Improving accuracy of herbage yield predictions in perennial ryegrass with uav-based structural and spectral data fusion and machine learning[J]. Remote Sensing, 2021, 13(17): ID 3459. | 77 | MICHEZ A, LEJEUNE P, BAUWENS S, et al. Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system[J]. Remote Sensing, 2019, 11(5): 473. | 78 | 方红亮, 田庆久. 高光谱遥感在植被监测中的研究综述[J]. 遥感技术与应用, 1998(1): 65-72. | 78 | FANG H, TIAN Q. A review of hyperspectral remote sensing in vegetation monitoring[J]. Remote Sensing Technology and Application, 1998(1): 65-72. | 79 | 张伟, 宜树华, 秦彧, 等. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. | 79 | ZHANG W, YI S, QIN Y, et al. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography[J]. Acta Prataculturae Sinica, 2021, 30(3): 15-27. | 80 | HASSAN-ESFAHANI L, TORRES-RUA A, JENSEN A, et al. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks[J]. Remote Sensing, 2015, 7(3): 2627-2646. | 81 | PINTéR K, NAGY Z. Building a UAV based system to acquire high spatial resolution thermal imagery for energy balance modelling[J]. Sensors, 2022, 22(9): ID 3251. | 82 | CHANDEL A K, KHOT L R, YU L-X. Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique[J]. Computers and Electronics in Agriculture, 2021, 182: ID 105999. | 83 | 郝鑫, 黄平平, 郭利彪, 等. 结合地形测绘数据的机载LiDAR草原植被冠层高度反演方法研究[J]. 内蒙古师范大学学报(自然科学汉文版), 2021, 50(4): 299-307. | 83 | HAO X, HUANG P, GUO L, et al. Research on the inversion method of airborne LiDAR grassland vegetation canopy height combined with topographic surveying and mapping data[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2021, 50(4): 299-307. | 84 | WANG D, XIN X, SHAO Q, et al. Modeling aboveground biomass in Hulunber grassland ecosystem by using unmanned aerial vehicle discrete LiDAR[J]. Sensors, 2017, 17(1): ID 180. | 85 | 王庆, 车荧璞, 柴宏红, 等. 基于无人机可见光与激光雷达的甜菜株高定量评估[J]. 农业机械学报, 2021, 52(3): 178-184. | 85 | WANG Q, CHE Y, CHAI H, et al. Quantitative evaluation of sugar beet plant height based on UAV-RGB and UAV-LiDAR[J]. Transactions of the CSAM, 2021, 52(3): 178-184. | 86 | 赵立新, 李繁茂, 李彦, 等. 基于无人机平台的直立作物倒伏监测研究展望[J]. 中国农机化学报, 2019, 40(11): 67-72. | 86 | ZHAO L, LI F, LI Y, et al. Application prospect of crop lodging monitoring based on UAV platform [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 67-72. | 87 | TANG Y, DANANJAYAN S, HOU C, et al. A survey on the 5G network and its impact on agriculture: Challenges and opportunities[J]. Computers and Electronics in Agriculture, 2021, 180: ID 105895. |
|