1 |
武春成, 周国彦, 曹霞, 等. 连作土壤连续施入生物炭对黄瓜品质及根区微生态的影响[J]. 江苏农业科学, 2022, 50(9): 143-147.
|
|
WU C C, ZHOU G Y, CAO X, et al. Influences of continuous application of biochar in continuous cultivated soils on cucumber quality and root zone micro ecology[J]. Jiangsu agricultural sciences, 2022, 50(9): 143-147.
|
2 |
尚小红, 周生茂, 郭元元, 等. 黄瓜异根嫁接植株抗逆性变化研究进展[J]. 中国细胞生物学学报, 2017, 39(3): 364-372.
|
|
SHANG X H, ZHOU S M, GUO Y Y, et al. Advances in stress-resistant changes in hetero-grafting cucumber (Cucumis sativus L.) plant[J]. Chinese journal of cell biology, 2017, 39(3): 364-372.
|
3 |
童安炀, 唐超, 王文剑. 基于双流网络与支持向量机融合的人体行为识别[J]. 模式识别与人工智能, 2021, 34(9): 863-870.
|
|
TONG A Y, TANG C, WANG W J. Human action recognition fusing two-stream networks and SVM[J]. Pattern recognition and artificial intelligence, 2021, 34(9): 863-870.
|
4 |
WANG C, WANG S F, LI J J, et al. Research on the identification method of overhead transmission line breeze vibration broken strands based on VMD-SSA-SVM[J]. Electronics, 2022, 11(19): ID 3028.
|
5 |
ZHANG X K, WANG Y J, DOU Z H, et al. Residual current fault type recognition based on S3VM and KNN cooperative training[J]. Journal of power electronics, 2022, 22(11): 1966-1977.
|
6 |
张春, 郭明亮. 大数据环境下朴素贝叶斯分类算法的改进与实现[J]. 北京交通大学学报, 2015, 39(2): 35-41.
|
|
ZHANG C, GUO M L. Research and realization of improved native Bayes classification algorithm under big data environment[J]. Journal of Beijing jiaotong university, 2015, 39(2): 35-41.
|
7 |
LETHIKIM N, NGUYENTRANG T, VOVAN T. A new image classification method using interval texture feature and improved Bayesian classifier[J]. Multimedia tools and applications, 2022, 81(25): 36473-36488.
|
8 |
PATIÑO-SAUCEDO J A, ARIZA-COLPAS P P, BUTT-AZIZ S, et al. Predictive model for human activity recognition based on machine learning and feature selection techniques[J]. International journal of environmental research and public health, 2022, 19(19): ID 12272.
|
9 |
WANG H, KLÄSER A, SCHMID C, et al. Action recognition by dense trajectories[C]// CVPR. Piscataway, New Jersey, USA: IEEE, 2011: 3169-3176.
|
10 |
WANG H, SCHMID C. Action recognition with improved trajectories[C]// 2013 IEEE International Conference on Computer Vision. Piscataway, New Jersey, USA: IEEE, 2013: 3551-3558.
|
11 |
SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 1. New York, USA: ACM, 2014: 568-576.
|
12 |
WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks: Towards good practices for deep action recognition[C]// European Conference on Computer Vision. Berlin, German: Springer, 2016: 20-36.
|
13 |
CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 4724-4733.
|
14 |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2015: 4489-4497.
|
15 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv: 1409.1556, 2014.
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
17 |
FEICHTENHOFER C, FAN H Q, MALIK J, et al. SlowFast networks for video recognition[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 6201-6210.
|
18 |
DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2015: 2625-2634.
|
19 |
WANG Z W, SHE Q, SMOLIC A. ACTION-net: Multipath excitation for action recognition[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13209-13218.
|
20 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7132-7141.
|
21 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 11531-11539.
|
22 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2999-3007.
|