Smart Agriculture ›› 2023, Vol. 5 ›› Issue (1): 122-131.doi: 10.12133/j.smartag.SA202303001
• Information Processing and Decision Making • Previous Articles Next Articles
JI Jie1,2(), JIN Zhou1, WANG Rujing1,2(
), LIU Haiyan1,2, LI Zhiyuan1,2
Received:
2023-03-03
Online:
2023-03-30
Foundation items:
About author:
JI Jie, E-mail:jijiejie@mail.ustc.edu.cn
corresponding author:
WANG Rujing, E-mail:rjwang@iim.ac.cn
CLC Number:
JI Jie, JIN Zhou, WANG Rujing, LIU Haiyan, LI Zhiyuan. Progressive Convolutional Net Based Method for Agricultural Named Entity Recognition[J]. Smart Agriculture, 2023, 5(1): 122-131.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202303001
Table 6
Comparison of the NER experimental results on public datasets — based on BERT
模型 | PeopleDaily | MSRA | ||||
---|---|---|---|---|---|---|
P/% | R/% | F1/% | P/% | R/% | F1/% | |
BERT | 93.81 | 94.12 | 93.97 | 94.48 | 93.78 | 94.12 |
Sesame | 86.05 | 85.53 | 85.79 | 88.76 | 87.18 | 87.96 |
JAM | 90.25 | 90.88 | 90.57 | 90.47 | 91.52 | 90.99 |
BERT- BiLSTM | 93.77 | 94.36 | 94.07 | 94.16 | 87.18 | 94.55 |
本文模型 | 94.53 | 94.44 | 94.48 | 94.04 | 94.89 | 94.96 |
1 | QIU X P, SUN T X, XU Y G, et al. Pre-trained models for natural language processing: A survey[J]. Science China technological sciences, 2020, 63(10): 1872-1897. |
2 | SEVASTJANOVA R, KALOULI A, BECK C, et al. Explaining contextualization in language models using visual analytics[C]// 2021 59th Association for Computational Linguistics (ACL). Stroudsburg, PA, USA: Association for Computational Linguistics, 2021: 464-476. |
3 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 4171-4186. |
4 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// 2017 31st Annual Conference on Neural Information Processing Systems (NIPS). La Jolla, California, USA: Neural Information Processing Systems, 2017: 6000-6100. |
5 | 杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46(4): 40-45, 52. |
YANG P, DONG W Y. Chinese named entity recognition method based on BERT embedding[J]. Computer engineering, 2020, 46(4): 40-45, 52. | |
6 | GAN Y, YANG R S, ZHANG C F, et al. Chinese named entity recognition based on BERT-transformer-BiLSTM-CRF model[C]// 2021 7th International Symposium on System and Software Reliability (ISSSR). Piscataway, NJ, USA: IEEE, 2021: 109-118. |
7 | GAO W C, ZHENG X H, ZHAO S S. Named entity recognition method of Chinese EMR based on BERT-BiLSTM-CRF[J]. Journal of physics. Conference series. 2021, 1848(1): ID 012083. |
8 | CHANG Y, KONG L, JIA K J, et al. Chinese named entity recognition method based on BERT[C]// 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA). Piscataway, NJ, USA: IEEE, 2021: 294-299. |
9 | LI X, YAN H, QIU X, et al . FLAT: Chinese NER Using Flat-Lattice Transformer; proceedings of the ACL, F, 2020[C]// 2020 58th Annual Meeting of the Association for Computational Linguistics (ACL). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020: 6836-6842. |
10 | 琚生根, 李天宁, 孙界平. 基于关联记忆网络的中文细粒度命名实体识别[J]. 软件学报, 2021, 32(8): 2545-2556. |
JU S G, LI T N, SUN J P. Chinese fine-grained name entity recognition based on associated memory networks[J]. Journal of software, 2021, 32(8): 2545-2556. | |
11 | WANG X Y, JIANG Y, BACH N, et al. Improving named entity recognition by external context retrieving and cooperative learning[J/OL]. arXiv: , 2021. |
12 | NIE Y Y, TIAN Y H, SONG Y, et al. Improving named entity recognition with attentive ensemble of syntactic information[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, PA, USA: Association for Computational Linguistics, 2020: 4231-4245. |
13 | 李林, 周晗, 郭旭超, 等. 基于多源信息融合的中文农作物病虫害命名实体识别[J]. 农业机械学报, 2021, 52(12): 253-263. |
LI L, ZHOU H, GUO X C, et al. Named entity recognition of diseases and insect pests based on multi source information fusion[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(12): 253-263. | |
14 | 赵鹏飞, 赵春江, 吴华瑞, 等. 基于注意力机制的农业文本命名实体识别[J]. 农业机械学报, 2021, 52(1): 185-192. |
ZHAO P F, ZHAO C J, WU H R, et al. Named entity recognition of Chinese agricultural text based on attention mechanism[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(1): 185-192. | |
15 | JAWAHAR G, SAGOT B, SEDDAH D. What does BERT learn about the structure of language? [C]// 2019 57th Annual Meeting of the Association for Computational Linguistics (ACL). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 3651-3657. |
16 | ROGERS A, KOVALEVA O, RUMSHISKY A. A primer in BERTology: What we know about how BERT works[J]. Transactions of the association for computational linguistics, 2020, 8: 842-866. |
17 | JIE Z M, LU W. Dependency-guided LSTM-CRF for named entity recognition[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 4231-4245. |
18 | ZHANG Z B, WU S, JIANG D W, et al. BERT-JAM: Maximizing the utilization of BERT for neural machine translation[J]. Neurocomputing, 2021, 460: 84-94. |
19 | SU T C, CHENG H C. SesameBERT: Attention for anywhere[C]// 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). Piscataway, NJ, USA: IEEE, 2020: 363-369. |
20 | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011-2023. |
21 | JIANG Z, YU W, ZHOU D, et al. ConvBERT: Improving BERT with Span-based Dynamic Convolution[J/OL]. arXiv:2008.02496 [cs.CL], 2020. |
22 | SUN C J, GUAN Y, WANG X L, et al. Rich features based Conditional Random Fields for biological named entities recognition[J]. Computers in biology and medicine, 2007, 37(9): 1327-1333. |
23 | WEI J, REN X, LI X, et al. NEZHA: Neural contextualized representation for Chinese language understanding[J/OL]. arXiv:1909.00204v3 [cs.CL], 2009. |
24 | CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM transactions on audio, speech and language processing, 2021, 29: 3504-3514. |
[1] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[2] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[3] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[4] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[5] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[6] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[7] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[8] | LIU Yan, JI Juncheng. GRA-WHO-TCN Combination Model for Forecasting Cold Chain Logistics Demand of Agricultural Products [J]. Smart Agriculture, 2024, 6(3): 148-158. |
[9] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
[10] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[11] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[12] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[13] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
[14] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[15] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||