Smart Agriculture ›› 2024, Vol. 6 ›› Issue (3): 138-147.doi: 10.12133/j.smartag.SA202402002
• Information Processing and Decision Making • Previous Articles Next Articles
NIE Ganggang1,2, RAO Honghui1,2(), LI Zefeng1,2, LIU Muhua1,2
Received:
2024-02-02
Online:
2024-05-30
Foundation items:
Jiangxi Science and Technology Planning Project(20141BBF60057); Provincial Forestry Bureau Camellia Fruit Research Special Project(YCYJZX2023221)
About author:
corresponding author:
NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT[J]. Smart Agriculture, 2024, 6(3): 138-147.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202402002
Table 4
Experimental classification of Camellia oleifera anthracnose by Camellia-YOLACT method
编号 | 真实值 | 预测值 | K绝对误差/% | 编号 | 真实值 | 预测值 | K绝对误差/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
K/% | 等级 | K/% | 等级 | K/% | 等级 | K/% | 等级 | ||||
1 | 58.31 | 3 | 57.28 | 3 | 1.03 | 19 | 80.68 | 4 | 77.11 | 4 | 3.57 |
2 | 43.14 | 2 | 43.05 | 2 | 0.09 | 20 | 23.92 | 1 | 21.31 | 1 | 2.61 |
3 | 0.00 | 0 | 0.00 | 0 | 0.00 | 21 | 6.26 | 1 | 6.24 | 1 | 0.02 |
4 | 7.32 | 1 | 6.84 | 1 | 0.48 | 22 | 16.55 | 1 | 13.69 | 1 | 2.86 |
5 | 26.08 | 2 | 24.56 | 1 | 1.52 | 23 | 22.32 | 1 | 20.28 | 1 | 2.04 |
6 | 8.54 | 1 | 8.03 | 1 | 0.51 | 24 | 7.83 | 1 | 7.04 | 1 | 0.79 |
7 | 63.88 | 3 | 63.03 | 3 | 0.85 | 25 | 21.80 | 1 | 21.50 | 1 | 0.30 |
8 | 10.39 | 1 | 9.34 | 1 | 1.05 | 26 | 0.00 | 0 | 0.00 | 0 | 0.00 |
9 | 52.65 | 3 | 49.12 | 2 | 3.53 | 27 | 8.18 | 1 | 7.67 | 1 | 0.51 |
10 | 76.44 | 4 | 75.34 | 4 | 1.10 | 28 | 12.97 | 1 | 10.95 | 1 | 2.02 |
11 | 53.34 | 3 | 53.26 | 3 | 0.08 | 29 | 19.50 | 1 | 18.38 | 1 | 1.12 |
12 | 0.00 | 0 | 0.00 | 0 | 0.00 | 30 | 13.77 | 1 | 13.55 | 1 | 0.22 |
13 | 0.00 | 0 | 0.00 | 0 | 0.00 | 31 | 28.68 | 2 | 27.64 | 2 | 1.04 |
14 | 12.19 | 1 | 11.29 | 1 | 0.90 | 32 | 7.21 | 1 | 4.50 | 1 | 2.71 |
15 | 18.18 | 1 | 17.99 | 1 | 0.20 | 33 | 14.81 | 1 | 13.07 | 1 | 1.74 |
16 | 47.29 | 2 | 46.20 | 2 | 1.09 | 34 | 5.04 | 1 | 4.72 | 1 | 0.32 |
17 | 62.31 | 3 | 59.92 | 3 | 2.39 | 35 | 11.06 | 1 | 10.50 | 1 | 0.56 |
18 | 36.39 | 2 | 35.86 | 2 | 0.53 | 36 | 18.22 | 1 | 16.85 | 1 | 1.37 |
1 |
张立伟, 王辽卫. 我国油茶产业的发展现状与展望[J]. 中国油脂, 2021, 46(6): 6-9, 27.
|
|
|
2 |
吴鹏飞, 姚小华. 种植密度对普通油茶炭疽病病害发生的影响[J]. 中国油料作物学报, 2019, 41(3): 455-460.
|
|
|
3 |
张蕊, 李锦涛. 基于深度学习的场景分割算法研究综述[J]. 计算机研究与发展, 2020, 57(4): 859-875.
|
|
|
4 |
|
5 |
|
6 |
|
7 |
万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 209-221.
|
|
|
8 |
|
9 |
王振, 张善文, 赵保平. 基于级联卷积神经网络的作物病害叶片分割[J]. 计算机工程与应用, 2020, 56(15): 242-250.
|
|
|
10 |
|
11 |
|
12 |
茹佳棋, 吴斌, 翁翔, 等. 基于改进UNet++模型的葡萄黑腐病病斑分割和病害程度分级[J]. 浙江农业学报, 2023, 35(11): 2720-2730.
|
|
|
13 |
邓朝, 纪苗苗, 任永泰. 基于Mask R-CNN的马铃薯叶片晚疫病量化评价[J]. 扬州大学学报(农业与生命科学版), 2022, 43(1): 135-142.
|
|
|
14 |
|
15 |
|
16 |
安徽省市场监督管理局. 茶炭疽病测报调查与防治技术规程: DB34/T 3863—2021 [S].
|
17 |
|
18 |
|
19 |
|
20 |
杨毅, 桑庆兵. 多尺度特征自适应融合的轻量化织物瑕疵检测[J]. 计算机工程, 2022, 48(12): 288-295.
|
|
|
21 |
|
22 |
蓝金辉, 王迪, 申小盼. 卷积神经网络在视觉图像检测的研究进展[J]. 仪器仪表学报, 2020, 41(4): 167-182.
|
|
|
23 |
|
[1] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
[2] | MA Weiwei, CHEN Yue, WANG Yongmei. Recognition of Sugarcane Leaf Diseases in Complex Backgrounds Based on Deep Network Ensembles [J]. Smart Agriculture, 2025, 7(1): 136-145. |
[3] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
[4] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
[5] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[6] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
[7] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
[8] | YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan. Rice Leaf Disease Image Enhancement Based on Improved CycleGAN [J]. Smart Agriculture, 2024, 6(6): 96-108. |
[9] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[10] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[11] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[12] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[13] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[14] | YANG Lin, LIU Shuangyin, XU Longqin, HE Min, SHENG Qingfeng, HAN Jiawei. Dynamic Prediction Method for Carbon Emissions of Cold Chain Distribution Vehicle under Multi-Source Information Fusion [J]. Smart Agriculture, 2024, 6(4): 138-148. |
[15] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||