1 | NAUATA N, HU H, ZHOU G T, et al. Structured label inference for visual understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(5): 1257-1271. | 2 | 黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 36(12):1-18. | 2 | HUANG K, REN W, TAN T. A review on image object classification and detection[J]. Chinese Journal of Computers, 2014, 36(12):1-18. | 3 | ZOU Z, SHI Z, GUO Y, et al. Object detection in 20 years: A survey[J/OL]. arXiv: 1905.05055v2 [cs.CV], 2019. | 4 | 李科岑, 王晓强, 林浩, 等. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58. | 4 | LI K, WANG X, LIN H, et al. Survey of one stage small object detection methods in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 41-58. | 5 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv: , 2020. | 6 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[J/OL]. arXiv:1804.02767 [cs.CV], 2018. | 7 | MAHTO P, GARG P, SETH P, et al. Refining YOLOv4 for vehicle detection[J]. International Journal of Advanced Research in Engineering and Technology, 2020, 11(5): 409-419. | 8 | ZHAI S, SHANG D, WANG S, et al. DF-SSD: An improved SSD object detection algorithm based on denseNet and feature fusion[J]. IEEE Access, 2020: 24344-24357. | 9 | 奚琦, 张正道, 彭力. 基于改进密集网络与二次回归的小目标检测算法[J]. 计算机工程, 2021, 47(4): 241-247, 255. | 9 | XI Q, ZHANG Z, PENG L. Small object detection algorithm based on improved dense network and quadratic regression[J]. Computer Engineering, 2021, 47(4): 241-247, 255. | 10 | SHENZ Q, LIU Z, LI J G, et al. DSOD: Learning deeply supervised object detectors from scratch[C]// The 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Computer Society, 2017: 1937-1945. | 11 | 李航, 朱明. 基于深度卷积神经网络的小目标检测算法[J]. 计算机工程与科学, 2020, 42(4): 649-657. | 11 | LI H, ZHU M. A small object detection algorithm based on deep convolutional neural network[J]. Computer Engineering & Science, 2020, 42(4): 649-657. | 12 | 周慧, 严凤龙, 褚娜, 等. 一种改进复杂场景下小目标检测模型的方法[J/OL]. 计算机工程与应用: 1-8. [2021-10-04]. . | 12 | ZHOU H, YAN F, ZHU N, et al. An approach to improve the detection model for small object in complex scenes[J/OL]. Computer Engineering and Applications:1-8. [2021-10-04]. . | 13 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// The Second International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA: AAAI, 1996: 226-231. | 14 | 李云红, 张轩, 李传真, 等. 融合DBSCAN的改进YOLOv3目标检测算法[J/OL]. 计算机工程与应用: 1-12. [2021-10-04]. . | 14 | LI Y, ZHANG X, LI C, et al. Improved YOLOv3 target detection algorithm combined with DBSCAN[J/OL]. Computer Engineering and Applications: 1-12. [2021-10-04]. . | 15 | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2019: 658-666. | 16 | YANG Y, LIAO Y, CHENG L, et al. Remote sensing image aircraft target detection based on GIoU-YOLOv3[C]// 2021 6th International Conference on Intelligent Computing and Signal Processing. Piscataway, New York, USA: IEEE, 2021: 474-478. | 17 | ZHENG Z, ZHAO H, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]// The 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence. Piscataway, New York, USA: AAAI, 2020: 12993-13000. | 18 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, (99): 2999-3007. | 19 | 张炳力, 秦浩然, 江尚, 等. 基于RetinaNet 及优化损失函数的夜间车辆检测方法[J]. 汽车工程, 2021, 43(8): 1195-1202. | 19 | ZHANG B, QIN H, JIANG S, et al. A method of vehicle detection at night based on RetinaNet and optimized loss functions[J]. Automotive Engineering, 2021, 43(8): 1195-1202. | 20 | 郑秋梅, 王璐璐, 王风华. 基于改进卷积神经网络的交通场景小目标检测[J]. 计算机工程, 2020, 46(6): 26-33. | 20 | ZHENG Q, WANG L, WANG F. Small object detection in traffic scene based on improved convolutional neural network[J]. Computer Engineering, 2020, 46(6): 26-33. | 21 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. | 22 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// In European Conference on Computer Vision. Cham, Switzerland: Springer: 2016. | 23 | Neubeck A, Gool L J V. Efficient non-maximum suppression[C]// International Conference on Pattern Recognition. Piscataway, New York, USA: IEEE Computer Society, 2006: 848-855. | 24 | 李景琳, 姜晶菲, 窦勇, 等. 基于Soft-NMS的候选框去冗余加速器设计[J]. 计算机工程与科学, 2021, 43(4): 586-593. | 24 | LI J, JIANG J, DOU Y, et al. A redundacy-reduced candidate box accelerator based on soft-non-maximum suppression[J]. Computer Engineering & Science, 2021, 43(4): 586-593. | 25 | 张长伦, 张翠文, 王恒友, 等. 基于注意力机制的NMS在目标检测中的研究[J]. 电子测量技术, 2021, 44(19): 82-88. | 25 | ZHANG C, ZHANG C, WANG H, et al. Research on non-maximum suppression based on attention mechanism in object detection[J]. Electronic Measurement Technology, 2021, 44(19): 82-88. |
|