| 1 |  HIRATA M. A new technique to describe canopy characteristics of grass swards with spatial distribution, dry-matter digestibility and dry weight of small-size canopy components[J]. Grass and forage science, 1996, 51(2): 209-218. | 
																													
																						| 2 |  LLORENS J,  GIL E,  LLOP J, et al. Georeferenced LiDAR 3D vine plantation map generation[J]. Sensors, 2011, 11(6): 6237-6256. | 
																													
																						| 3 |  BALSARI P,  MARUCCO P,  TAMAGNONE M. Variable spray application rate in orchards according to vegetation characteristics[C]// Agricultural and Biosystems Engineering for a Sustainable World International Conference on Agricultural Engineering. Silsoe, UK: European Society of Agricultural Engineers, 2008: ID 20083322024. | 
																													
																						| 4 |  GIL E,  ESCOLÀ A,  ROSELL J R, et al. Variable rate application of plant protection products in vineyard using ultrasonic sensors[J]. Crop protection, 2007, 26(8): 1287-1297. | 
																													
																						| 5 |  SHIMBORSKY E. Digital tree mapping and its applications[C]// Precision agriculture: Papers from the 4th European Conference on Precision Agriculture. Wageningen, Netherlands: Wageningen Academic Publishers, 2003: 645-650. | 
																													
																						| 6 |  ROSELL POLO J R,  ARNÓ J,  VALLÈS J M, et al. Ground Laser Scanner Data Analysis for LAI Prediction in Orchards and Vineyards[C]// Proceedings of International Conference on Agricultural Engineering. La ciutat de Barcelona, Espanya: Universitat Politècnica de Catalunya, 2006: 311-312. | 
																													
																						| 7 | QAMAR-UZ-ZAMAN,  SCHUMANN A W. Nutrient management zones for Citrus based on variation in soil properties and tree performance[J]. Precision agriculture, 2006, 7(1): 45-63. | 
																													
																						| 8 |  SONG B,  CHEN J Q,  DESANDER P V, et al. Modeling canopy structure and heterogeneity across scales: From crowns to canopy[J]. Forest ecology and management, 1997, 96(3): 217-229. | 
																													
																						| 9 |  LU X Q,  WANG B Q,  ZHENG X T, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(4): 2183-2195. | 
																													
																						| 10 |  ZHANG B,  WU Y F,  ZHAO B Y, et al. Progress and challenges in intelligent remote sensing satellite systems[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2022, 15: 1814-1822. | 
																													
																						| 11 |  ZHANG Q,  ZHANG P L. An uncertainty descriptor for quantitative measurement of the uncertainty of remote sensing images[J]. Remote sensing, 2019, 11(13): ID 1560. | 
																													
																						| 12 |  TANG L N,  SHAO G F. Drone remote sensing for forestry research and practices[J]. Journal of forestry research, 2015, 26(4): 791-797. | 
																													
																						| 13 |  AMPATZIDIS Y,  PARTEL V. UAV-based high throughput phenotyping in Citrus utilizing multispectral imaging and artificial intelligence[J]. Remote sensing, 2019, 11(4): ID 410. | 
																													
																						| 14 |  LIAO X H,  YUE H Y,  LIU R G, et al. Launching an unmanned aerial vehicle remote sensing data carrier: Concept, key components and prospects[J]. International journal of digital earth, 2020, 13(10): 1172-1185. | 
																													
																						| 15 | LYU X,  LI X B,  DANG D L, et al. Unmanned aerial vehicle (UAV) remote sensing in grassland ecosystem monitoring: A systematic review[J]. Remote sensing, 2022, 14(5): ID 1096. | 
																													
																						| 16 | 李鑫星, 曹闪闪, 白雪冰, 等. 多光谱技术在土壤成分含量检测中的研究进展[J]. 光谱学与光谱分析, 2020,40(7): 2042-2047. | 
																													
																						|  |  LI X X,  CAO S S,  BAI X B, et al. Research progress of multi-spectral technique in the determination of soil component content[J]. Spectroscopy and spectral analysis, 2020, 40(7): 2042-2047. | 
																													
																						| 17 |  WANG C Y,  LIU B H,  LIU L P, et al. A review of deep learning used in the hyperspectral image analysis for agriculture[J]. Artificial intelligence review, 2021, 54(7): 5205-5253. | 
																													
																						| 18 |  VADIVAMBAL R,  JAYAS D S. Applications of thermal imaging in agriculture and food industry: A review[J]. Food and bioprocess technology, 2011, 4(2): 186-199. | 
																													
																						| 19 |  OMASA K, ONO E,  ISHIGAMI Y,et al. Plant functional remote sensing and smart farming applications[J]. International journal of agricultural and biological engineering, 2022, 15(4): 1-6. | 
																													
																						| 20 |  TOLDO M,  MARACANI A,  MICHIELI U, et al. Unsupervised domain adaptation in semantic segmentation: A review[J]. Technologies, 2020, 8(2): ID 35. | 
																													
																						| 21 |  ZENG L H,  FENG J,  HE L. Semantic segmentation of sparse 3D point cloud based on geometrical features for trellis-structured apple orchard[J]. Biosystems engineering, 2020, 196: 46-55. | 
																													
																						| 22 |  DENG J T,  NIU Z J,  ZHANG X, et al. Kiwifruit vine extraction based on low altitude UAV remote sensing and deep semantic segmentation[C]// 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Piscataway, New Jersey, USA: IEEE, 2021: 843-846. | 
																													
																						| 23 |  LONG X D,  ZHANG W W,  ZHAO B. PSPNet-SLAM: A semantic SLAM detect dynamic object by pyramid scene parsing network[J]. IEEE access, 2020, 8: 214685-214695. | 
																													
																						| 24 |  SONG Z Z,  ZHOU Z X,  WANG W Q, et al. Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting[J]. Computers and electronics in agriculture, 2021, 181: ID 105933. |