1 |
赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-18.
|
|
ZHAO C. Big data of plant phenomics and its research progress[J]. Journal of Agricultural Big Data, 2019, 1(2): 5-18.
|
2 |
VOS J, EVERS J B, BUCK-SORLIN G H, et al. Functional-structural plant modelling: A new versatile tool in crop science[J]. Journal of Experimental Botany, 2010, 61(8): 2101-2115.
|
3 |
ROBERT T, FURBANK, TESTERMARK. Phenomics -technologies to relieve the phenotyping bottleneck[J]. Trends in Plant Science, 2011, 16(12): 635-644.
|
4 |
COBB J N, DECLERCK G, GREEBERG A, et al. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement[J]. Theoretical and Applied Genetics, 2013, 126: 867-887.
|
5 |
赵春江, 陆声链, 郭新宇, 等. 数字植物及其技术体系探讨[J]. 中国农业科学, 2010, 43(10): 2023-2030.
|
|
ZHAO C, LU S, GUO X, et al. Exploration of digital plant and its technology system[J]. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030.
|
6 |
FIORANI F, SCHURR U. Future scenarios for plant phenotyping[J]. Annual Review of Plant Biology, 2013, 64(1): 267-291.
|
7 |
HOULE D, GOVINDARAJU D R, OMHOLT S. Phenomics: The next challenge[J]. Nature Reviews Genetics, 2010, 11(12): 855-866.
|
8 |
KUMAR J, PRATAP A, KUMAR S. Phenomics in crop plants: Trends, options and limitations[M]. Berlin: Springer India, 2015.
|
9 |
GROßKINSKY DOMINIK K, JESPER S, SVEND C, et al. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap[J]. Journal of Experimental Botany, 2015, 66(18): 5429-5440.
|
10 |
朱荣胜, 李帅, 孙永哲, 等. 作物三维重构技术研究现状及前景展望[J]. 智慧农业(中英文), 2021, 3(3): 94-115.
|
|
ZHU R, LI S, SUN Y, et al. Research advances and prospect of crop 3D reconstruction technology[J]. Smart Agriculture, 2021, 3(3): 94-115.
|
11 |
GUO W, RAGE U K, NINOMLYA S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model[J]. Computer and Electronics in Agriculture, 2013, 96: 58-66.
|
12 |
宗泽, 张雪, 郭彩玲, 等. 基于骨架提取算法的作物表型参数提取方法[J]. 农业工程学报, 2015, 31(S2): 180-185.
|
|
ZONG Z, ZHANG X, GUO C, et al. Crop phenotypic parameters extraction method based on skeleton extraction algorithm[J]. Transactions of the CSAE, 2015, 31(S2): 180-185.
|
13 |
PAPROKI A, SIRAULT X, BERRY S, et al. A novel mesh processing based technique for 3D plant analysis[J]. BMC Plant Biology, 2012, 12(1): 63-63.
|
14 |
柴宏红, 邵科, 于超, 等. 基于三维点云的甜菜根表型参数提取与根型判别[J]. 农业工程学报, 2020, 36(10): 181-188.
|
|
CHAI H, SHAO K, YU C, et al. Extraction of phenotypic parameters and discrimination of beet root types based on 3D point cloud[J]. Transactions of the CSAE, 2020, 36(10): 181-188.
|
15 |
PAULUS S, SCHUMANN H, KUHLMANN H, et al. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[J]. Biosystems Engineering, 2014, 121: 1-11.
|
16 |
付晶波, 施家伟, 张俊, 等. 基于Mask R-CNN的盆栽小麦单片叶长和株高提取研究[J]. 吉林农业大学学报, 2021, 43(2): 163-170.
|
|
FU J, SHI J, ZHANG J, et al. Extraction of leaf length and plant height from potted wheat based on Mask R-CNN[J]. Journal of Jilin Agricultural University, 2021, 43(2): 163-170.
|
17 |
翟苗苗. 基于地面激光雷达的小麦生物量和分蘖数估算研究[D]. 南京: 南京农业大学, 2018.
|
|
ZHAI M. Estimating wheat biomass and tiller number based on terrestrial laser scanning[D]. Nanjing: Nanjing Agricultural University, 2018.
|
18 |
SINOQUET H, THANISAWANYANGKURA S, MABROUK H, et al. Characterization of the light environment in canopies using 3D digitising and image processing[J]. Annals of Botany, 1998, 82(2): 203-212.
|
19 |
郭焱, 李保国. 虚拟植物的研究进展[J]. 科学通报, 2001(4): 273-280.
|
|
GUO Y, LI B. Research progress of virtual plant[J]. Chinese Science Bulletin, 2001(4): 273-280.
|
20 |
温维亮, 郭新宇, 卢宪菊, 等. 玉米器官三维模板资源库构建[J]. 农业机械学报, 2016, 47(8): 266-272.
|
|
WEN W, GUO X, LU X, et al. Three-dimensional template resource library construction of maize organs[J]. Transactions of the CASM, 2016, 47(8): 266-272.
|
21 |
温维亮, 郭新宇, 赵春江, 等. 基于三维数字化的玉米株型参数提取方法研究[J]. 中国农业科学, 2018, 51(6): 1034-1044.
|
|
WEN W, GUO X, ZHAO C, et al. Research on maize plant type parameter extraction by using three dimensional digitizing data[J]. Scientia Agricultura Sinica, 2018, 51(6):1034-1044.
|
22 |
FOUTNIER C, ANDRIEU B, LJUTOVAC S, et al. ADEL-Wheat: A 3D Architectural Model of wheat development[C]// International Symposium on Plant Growth Modeling. Beijing, China: Tsinghua University Press-Springer Verlag, 2003.
|
23 |
曹卫星, 李存东. 小麦器官发育序列化命名方案[J].中国农业科学, 1997, 30(5):67-71.
|
|
CAO W, LI C. A Sequential naming scheme for developmental organs in wheat[J]. Scientia Agricultura Sinica, 1997, 30(5): 67-71.
|
24 |
李英硕, 杨帆, 袁兆奎. 空间圆形拟合检测新方法[J]. 测绘科学, 2013, 38(6): 147-148.
|
|
LI Y, YANG F, YUAN Z. A new method of spatial circle fitting detection[J]. Science of Surveying and Mapping, 2013, 38(6): 147-148.
|
25 |
栾婉娜, 刘成明. 基于逆Loop细分的半正则网格简化算法[J]. 图学学报, 2020, 41(6): 980-986.
|
|
LUAN W, LIU C. A semi-regular mesh simplification algorithm based on inverse Loop subdivision[J]. Journal of Graphics, 2020, 41(6): 980-986.
|
26 |
诸叶平, 李世娟, 李书钦. 作物生长过程模拟模型与形态三维可视化关键技术研究[J]. 智慧农业, 2019, 1(1): 53-66.
|
|
ZHU Y, LI S, LI S. Research on key technologies of crop growth process simulation model and morphological 3D visualization[J]. Smart Agriculture, 2019, 1(1): 53-66.
|
27 |
吴倩, 孙飒爽, 赵哲民, 等. 基于3DSOM的植株三维重建方法研究[J]. 农机化研究, 2017, 39(9):148-153.
|
|
WU Q, SUN Y, ZHAO Z, et al. Study on the 3D reconstruction method of plants based on 3DSOM[J]. Journal of Agricultural Mechanization Research, 2017, 39(9): 148-153.
|
28 |
史维杰, 张吴平, 郝雅洁, 等. 基于视觉三维重建的作物表型分析[J]. 湖北农业科学, 2019, 58(16): 125-128.
|
|
SHI W, ZHANG W, HAO Y, et al. Crop phenotypic analysis based on visual 3D reconstruction[J]. Hubei Agricultural Sciences, 2019, 58(16): 125-128.
|
29 |
方伟, 冯慧, 杨万能, 等. 表型检测中用于小麦株型研究的快速三维重建方法[J]. 中国农业科技导报, 2016, 18(2): 95-101.
|
|
FANG W, FENG H, YANG W, et al. A fast 3D reconstruction for wheat plant architecture studies in phenotyping[J]. Journal of Agricultural Science and Technology, 2016, 18(2): 95-101.
|
30 |
YANG Y, ZHANG J, WU K, et al. 3D point cloud on semantic information for wheat reconstruction[J]. Agriculture, 2021, 11(5): ID 450.
|