1 |
胡卫国, 曹廷杰, 杨剑, 等. 小麦新品种(系)抗倒性及产量构成因素评价[J]. 种子, 2021, 40(2): 110-115.
|
|
HU W G, CAO T J, YANG J, et al. Evaluation of lodging resistance and yield components of new wheat varieties (lines)[J]. Seed, 2021, 40(2): 110-115.
|
2 |
WU W, MA B L. A new method for assessing plant lodging and the impact of management options on lodging in canola crop production[J]. Scientific reports, 2016, 6: ID 31890.
|
3 |
PINTHUS M J. Lodging in wheat, barley, and oats: The phenomenon, its causes, and preventive measures[J]. Advances in agronomy, 1974, 25: 209-263.
|
4 |
王芬娥, 黄高宝, 郭维俊, 等. 小麦茎秆力学性能与微观结构研究[J]. 农业机械学报, 2009, 40(5): 92-95.
|
|
WANG F E, HUANG G B, GUO W J, et al. Mechanical properties and micro-structure of wheat stems[J]. Transactions of the Chinese society for agricultural machinery, 2009, 40(5): 92-95.
|
5 |
BERRY P M, SPINK J. Predicting yield losses caused by lodging in wheat[J]. Field crops research, 2012, 137: 19-26.
|
6 |
BERRY P M, STERLING M, SPINK J H, et al. Understanding and reducing lodging in cereals[M]// Advances in agronomy. Amsterdam: Elsevier, 2004: 217-271.
|
7 |
孙盈盈, 王超, 王瑞霞, 等. 小麦倒伏原因、机理及其对产量和品质影响研究进展[J]. 农学学报, 2022, 12(3): 1-5.
|
|
SUN Y Y, WANG C, WANG R X, et al. Wheat lodging: Cause and mechanism and its effect on wheat yield and quality[J]. Journal of agriculture, 2022, 12(3): 1-5.
|
8 |
赵静, 闫春雨, 杨东建, 等. 基于无人机多光谱遥感的台风灾后玉米倒伏信息提取[J]. 农业工程学报, 2021, 37(24): 56-64.
|
|
ZHAO J, YAN C Y, YANG D J, et al. Extraction of maize lodging information after typhoon based on UAV multispectral remote sensing[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(24): 56-64.
|
9 |
董锦绘, 杨小冬, 高林, 等. 基于无人机遥感影像的冬小麦倒伏面积信息提取[J]. 黑龙江农业科学, 2016(10): 147-152.
|
|
DONG J H, YANG X D, GAO L, et al. Information extraction of winter wheat lodging area based on UAV remote sensing image[J]. Heilongjiang agricultural sciences, 2016(10): 147-152.
|
10 |
刘良云, 王纪华, 宋晓宇, 等. 小麦倒伏的光谱特征及遥感监测[J]. 遥感学报, 2005, 9(3): 323-327.
|
|
LIU L Y, WANG J H, SONG X Y, et al. The canopy spectral features and remote sensing of wheat lodging[J]. Journal of remote sensing, 2005, 9(3): 323-327.
|
11 |
ZHANG Z, FLORES P, IGATHINATHANE C, et al. Wheat lodging detection from UAS imagery using machine learning algorithms[J]. Remote sensing, 2020, 12(11): ID 1838.
|
12 |
BENDIG J, YU K, AASEN H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International journal of applied earth observation and geoinformation, 2015, 39: 79-87.
|
13 |
DU M M, NOGUCHI N. Multi-temporal monitoring of wheat growth through correlation analysis of satellite images, unmanned aerial vehicle images with ground variable[J]. IFAC-PapersOnLine, 2016, 49(16): 5-9.
|
14 |
LU Y Z, LU R F. Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithms[J]. Transactions of the ASABE, 2018, 61(6): 1831-1842.
|
15 |
NAIK D L, KIRAN R. Identification and characterization of fracture in metals using machine learning based texture recognition algorithms[J]. Engineering fracture mechanics, 2019, 219: ID 106618.
|
16 |
RAJAPAKSA S, ERAMIAN M, DUDDU H, et al. Classification of crop lodging with gray level co-occurrence matrix[C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New Jersey, USA: IEEE, 2018: 251-258.
|
17 |
ZHANG Z, IGATHINATHANE C, FLORES P, et al. UAV mission height effects on wheat lodging ratio detection[M]// Unmanned aerial systems in precision agriculture. Singapore: Springer, 2022: 73-85.
|
18 |
YU J, CHENG T, CAI N, et al. Wheat lodging segmentation based on Lstm_PSPNet deep learning network[J]. Drones, 2023, 7(2): ID 143.
|
19 |
NEUPANE B, HORANONT T, HUNG N D. Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV)[J]. PLoS one, 2019, 14(10): ID e0223906.
|
20 |
MAHESH B. Machine learning algorithms: A review[J]. International journal of science and research, 2020, 9(1): 381-386.
|
21 |
韩安太, 郭小华, 廖忠, 等. 基于压缩感知理论的农业害虫分类方法[J]. 农业工程学报, 2011, 27(6): 203-207.
|
|
HAN A T, GUO X H, LIAO Z, et al. Classification of agricultural pests based on compressed sensing theory[J]. Transactions of the Chinese society of agricultural engineering, 2011, 27(6): 203-207.
|
22 |
GUO G, WANG H, BELL D, et al. On the move to meaningful internet systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings[M]. Berlin: Springer Berlin Heidelberg, 2003.
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
24 |
TAN M X, LE Q V. EfficientNetV2: Smaller models and faster training[EB/OL]. arXiv: 2104.00298, 2021
|
25 |
ZHOU D Q, HOU Q B, CHEN Y P, et al. Rethinking bottleneck structure for efficient mobile network design[EB/OL]. arXiv: 2007.02269, 2020.
|
26 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey,USA: IEEE, 2021: 13708-13717.
|
27 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2999-3007.
|
28 |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|