1 |
NAGY É, LEHOCZKI-KRSJAK S, LANTOS C, et al. Phenotyping for testing drought tolerance on wheat varieties of different origins[J]. South African journal of botany, 2018, 116: 216-221.
|
2 |
陈进, 练毅, 邹容, 等. 基于机器视觉技术的水稻籽粒破碎率监测方法[J]. 农业工程技术, 2020, 40(30): ID 94.
|
|
CHEN J, LIAN Y, ZOU R, et al. Real-time grain breakage sensing for rice combine harvesters using machine vision technology[J]. Agricultural engineering technology, 2020, 40(30): ID 94.
|
3 |
GAO L, YANG J, SONG S J, et al. Genome-wide association study of grain morphology in wheat[J]. Euphytica, 2021, 217(8): 1-12.
|
4 |
李海泳, 殷贵鸿. 从国家粮食安全角度探讨我国小麦育种发展趋势[J]. 江苏农业科学, 2022, 50(18): 36-41.
|
|
LI H Y, YIN G H. On development trend of China's wheat breeding from perspective of national grain security[J]. Jiangsu agricultural sciences, 2022, 50(18): 36-41.
|
5 |
GAO H, ZHEN T, LI Z H. Detection of wheat unsound kernels based on improved ResNet[J]. IEEE access, 2022, 10: 20092-20101.
|
6 |
SHAHIN M A, SYMONS S J. Detection of fusarium damage in Canadian wheat using visible/near-infrared hyperspectral imaging[J]. Journal of food measurement & characterization, 2012, 6(1/2/3/4): 3-11.
|
7 |
冯继克, 郑颖, 李平, 等. 基于特征选择的小麦籽粒品种识别研究[J]. 中国农机化学报, 2022, 43(7): 116-123.
|
|
FENG J K, ZHENG Y, LI P, et al. Research on the identification of wheat grain varieties based on feature selection[J]. Journal of Chinese agricultural mechanization, 2022, 43(7): 116-123.
|
8 |
ZHAO W Y, LIU S Y, LI X Y, et al. Fast and accurate wheat grain quality detection based on improved YOLOv5[J]. Computers and electronics in agriculture, 2022, 202(11): ID 107426.
|
9 |
王莹, 李越, 武婷婷, 等. 基于密度估计和VGG-Two的大豆籽粒快速计数方法[J]. 智慧农业(中英文), 2021, 3(4): 111-122.
|
|
WANG Y, LI Y, WU T T, et al. Fast counting method of soybean seeds based on density estimation and VGG-two[J]. Smart agriculture, 2021, 3(4): 111-122.
|
10 |
刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 223-229.
|
|
LIU H, WANG Y Q, WANG X M, et al. Study on detection method of wheat unsound kernel based on near-infrared hyperspectral imaging technology[J]. Spectroscopy and spectral analysis, 2019, 39(1): 223-229.
|
11 |
宋怀波, 王云飞, 段援朝, 等. 基于YOLO v5-MDC的重度粘连小麦籽粒检测方法[J]. 农业机械学报, 2022, 53(4): 245-253.
|
|
SONG H B, WANG Y F, DUAN Y C, et al. Detection method of severe adhesive wheat grain based on YOLO v5-MDC model[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(4): 245-253.
|
12 |
HUANG S, FAN X F, SUN L, et al. Research on classification method of maize seed defect based on machine vision[J]. Journal of sensors, 2019, 2019: 1-9.
|
13 |
祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42.
|
|
ZHU S P, ZHUO J X, HUANG H, et al. Wheat grain integrity image detection system based on CNN[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(5): 36-42.
|
14 |
徐凌翔, 陈佳玮, 丁国辉, 等. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业(中英文), 2020, 2(1): 23-42.
|
|
XU L X, CHEN J W, DING G H, et al. Indoor phenotyping platforms and associated trait measurement: Progress and prospects[J]. Smart agriculture, 2020, 2(1): 23-42.
|
15 |
赵华民, 葛春静, 贾举庆, 等. 基于图像分析的小麦籽粒高通量表型系统研究[J]. 山东农业科学, 2021, 53(6): 113-120.
|
|
ZHAO H M, GE C J, JIA J Q, et al. Study on high-throughput phenotyping system of wheat grains based on image analysis[J]. Shandong agricultural sciences, 2021, 53(6): 113-120.
|
16 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 6154-6162.
|
17 |
PURKAIT P, ZHAO C, ZACH C. SPP-net: Deep absolute pose regression with synthetic views[EB/OL]. arXiv: 1712.03452, 2017.
|
18 |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2016: 1440-1448.
|
19 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
20 |
WU W Q, YIN Y J, WANG X G, et al. Face detection with different scales based on faster R-CNN[J]. IEEE transactions on cybernetics, 2019, 49(11): 4017-4028.
|