1 |
李威, 顾峰雪. 区域作物产量的模型预测研究[J]. 农业展望, 2020, 16(3): 104-111.
|
|
LI W, GU F X. Prediction of regional crop yield based on model[J]. Agricultural outlook, 2020, 16(3): 104-111.
|
2 |
农业农村部市场预警专家委员会. 中国农业展望报告2019—2028[M]. 北京: 中国农业科学技术出版社, 2019.
|
|
Expert Committee on Market Warning of Ministry of Agriculture and Rural Affairs. China agricultural outlook 2019-2028[M]. Beijing: China Agricultural Science and Technology Press, 2019.
|
3 |
高俊杰, 袁业溶, 梁应. 高要区早稻产量预测模型的建立[J]. 广东气象, 2022, 44(2): 50-52.
|
|
GAO J J, YUAN Y R, LIANG Y. Establishment of early rice yield prediction model in Gaoyao area[J]. Guangdong meteorology, 2022, 44(2): 50-52.
|
4 |
于珍珍, 邹华芬, 于德水, 等. 融合田间水热因子的甘蔗产量GA-BP预测模型[J]. 农业机械学报, 2022, 53(10): 277-283.
|
|
YU Z Z, ZOU H F, YU D S, et al. Sugarcane yield GA-BP prediction model incorporating field water and heat factors[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(10): 277-283.
|
5 |
陈上. 基于历史气象数据和CERES-maize模型的玉米产量预测及灌溉决策方法[D]. 杨凌: 西北农林科技大学, 2017.
|
|
CHEN S. Yield forecast and irrigation decision for maize based on historical weather data and the Ceres-maize model[D]. Yangling: Northwest A & F University, 2017.
|
6 |
王二虎, 宋晓. 基于气象因子的开封市花生产量预测模型[J]. 陕西农业科学, 2012, 58(4): 31-33.
|
|
WANG E H, SONG X. Prediction model of peanut yield in Kaifeng city based on meteorological factors[J]. Shaanxi journal of agricultural sciences, 2012, 58(4): 31-33.
|
7 |
何虹, 王巧娟, 李亮, 等. 宁夏引黄灌区玉米趋势产量与气候产量分离方法研究[J]. 灌溉排水学报, 2022, 41(4): 30-39.
|
|
HE H, WANG Q J, LI L, et al. Separating the effect of meteorology on maize yield from the impact of other factors in the Yellow River-water irrigated regions in Ningxia of China[J]. Journal of irrigation and drainage, 2022, 41(4): 30-39.
|
8 |
顾雅文, 姚艳丽, 傅玮东. 基于关键气象因子的阿克苏地区苹果产量预测模型[J]. 新疆农业科技, 2021(2): 22-24.
|
|
GU Y W, YAO Y L, FU W D. Prediction model of apple yield in Aksu region based on key meteorological factors[J]. Xinjiang agricultural science and technology, 2021(2): 22-24.
|
9 |
何修君. 基于机器学习的玉米产量预测模型研究[D]. 长春: 吉林农业大学, 2021.
|
|
HE X J. Research on maize yield prediction model based on machine learning[D]. Changchun: Jilin Agricultural University, 2021.
|
10 |
李严明. 基于机器学习的气象因素对小麦产量影响的分析预测[D]. 郑州: 河南农业大学, 2019.
|
|
LI Y M. Wheat yield forecasting: A machine learning approach based on meteorological factors[D]. Zhengzhou: Henan Agricultural University, 2019.
|
11 |
ZHAO Y X, XIAO D P, BAI H Z, et al. The prediction of wheat yield in the North China plain by coupling crop model with machine learning algorithms[J]. Agriculture, 2022, 13(1): ID 99.
|
12 |
CROCI M, IMPOLLONIA G, MERONI M, et al. Dynamic maize yield predictions using machine learning on multi-source data[J]. Remote sensing, 2022, 15(1): ID 100.
|
13 |
OIKONOMIDIS A, CATAL C, KASSAHUN A. Hybrid deep learning-based models for crop yield prediction[J]. Applied artificial intelligence, 2022, 36(1): 1-18.
|
14 |
DI Y, GAO M F, FENG F K, et al. A new framework for winter wheat yield prediction integrating deep learning and Bayesian optimization[J]. Agronomy, 2022, 12(12): ID 3194.
|
15 |
BURDETT H, WELLEN C. Statistical and machine learning methods for crop yield prediction in the context of precision agriculture[J]. Precision agriculture, 2022, 23(5): 1553-1574.
|
16 |
QU L S, ZHU Q A, ZHU C F, et al. 2022. Monthly precipitation data set with 1 km resolution in China from 1960 to 2020[DB/OL]. Science Data Bank. [2022-04-15]. .
|
17 |
黄海迅, 周筠珺, 曾勇, 等. 广西贵港甘蔗产量气象预报[J]. 成都信息工程大学学报, 2020, 35(5): 554-559.
|
|
HUANG H X, ZHOU Y J, ZENG Y, et al. Meteorological forecast of sugarcane production in Guigang, Guangxi[J]. Journal of Chengdu university of information technology, 2020, 35(5): 554-559.
|
18 |
许鑫, 马兆务, 熊淑萍, 等. 基于气候年型的河南省冬小麦产量预测[J]. 中国农业科技导报, 2022, 24(2): 136-144.
|
|
XU X, MA Z W, XIONG S P, et al. Wheat yield forecast in Henan Province based on climate year type[J]. Journal of agricultural science and technology, 2022, 24(2): 136-144.
|
19 |
王桂芝, 陆金帅, 陈克垚, 等. 基于HP滤波的气候产量分离方法探讨[J]. 中国农业气象, 2014, 35(2): 195-199.
|
|
WANG G Z, LU J S, CHEN K Y, et al. Exploration of method in separating climatic output based on HP filter[J]. Chinese journal of agrometeorology, 2014, 35(2): 195-199.
|
20 |
ZHOU C H, WU Z Y, LIU C. A study on quality prediction for smart manufacturing based on the optimized BP-AdaBoost model[C]// 2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE). Piscataway, NJ, USA: IEEE, 2020: 1-3.
|
21 |
KAZEMI A, BOOSTANI R, ODEH M, et al. Two-layer SVM, towards deep statistical learning[C]// 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI). Piscataway, NJ, USA: IEEE, 2022.
|
22 |
MIAH M O, KHAN S S, SHATABDA S, et al. Improving detection accuracy for imbalanced network intrusion classification using cluster-based under-sampling with random forests[C]// 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). Piscataway, NJ, USA: IEEE, 2019: 1-5.
|
23 |
AKANDEH A, SALEM F M. Slim LSTM networks: Lstm_6 and LSTM_C6[C]// 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway, NJ, USA: IEEE, 2020: 630-633.
|
24 |
欧钊荣, 谭宗琨, 何燕, 等. 影响我国甘蔗主产区甘蔗产量的关键气象因子及其丰欠指标[J]. 安徽农业科学, 2008, 36(24): 10407-10410, 10415.
|
|
OU Z R, TAN Z K, HE Y, et al. The key meteorological factors affecting the sugarcane yield in major production areas in China and their high-low yield indices[J]. Journal of Anhui agricultural sciences, 2008, 36(24): 10407-10410, 10415.
|
25 |
李志强, 张香燕, 田华东. 应用HP滤波的卫星遥测数据预测方法[J]. 航天器工程, 2021, 30(4): 23-30.
|
|
LI Z Q, ZHANG X Y, TIAN H D. Prediction method of satellite telemetry data using HP filter[J]. Spacecraft engineering, 2021, 30(4): 23-30.
|