1 |
HTWE N M P S, RUANGRAK E. A review of sensing, uptake, and environmental factors influencing nitrate accumulation in crops[J]. Journal of plant nutrition, 2021, 44(7): 1054-1065.
|
2 |
BURTON L, JAYACHANDRAN K, BHANSALI S. Review—The "Real-Time" Revolution for in situ Soil Nutrient Sensing[J]. Journal of the electrochemical society, 2020, 167(3): ID 037569.
|
3 |
佘洁, 石云, 赵娜, 等. 土壤养分的空间变异性研究进展[J]. 山东农业科学, 2023, 55(1): 165-172.
|
|
SHE J, SHI Y, ZHAO N, et al. Progress of spatial variability of soil nutrients[J]. Shandong agricultural sciences, 2023, 55(1): 165-172.
|
4 |
SPARKS D L, PAGE A L, HELMKE P A, et al. Methods of soil analysis[M]. Madison: John Wiley & Sons, 1996.
|
5 |
ADELINE K R M, GOMEZ C, GORRETTA N, et al. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data[J]. Geoderma, 2017, 288: 143-153.
|
6 |
YUZUGULLU O, LORENZ F, FRÖHLICH P, et al. Understanding fields by remote sensing: Soil zoning and property mapping[J]. Remote sensing, 2020, 12(7): ID 1116.
|
7 |
BOWERS S A, HANKS R J. Reflection of radiant energy from soils[J]. Soil science, 1965, 100(2): 130-138.
|
8 |
DALAL R C, HENRY R J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil science society of America journal, 1986, 50(1): 120-123.
|
9 |
PENG Y, XIONG X, ADHIKARI K, et al. Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra[J]. PLoS one, 2015, 10(11): ID e0142295.
|
10 |
高会, 陈红艳, 刘慧涛, 等. 基于高光谱的鲁西北平原土壤有效磷含量快速检测研究[J]. 中国生态农业学报, 2013, 21(6): 752-757.
|
|
GAO H, CHEN H Y, LIU H T, et al. Spontaneous determination of soil available phosphorus using high spectrum in the Northwest plain of Shandong province[J]. Chinese journal of eco-agriculture, 2013, 21(6): 752-757.
|
11 |
王莉雯, 卫亚星. 湿地土壤全氮和全磷含量高光谱模型研究[J]. 生态学报, 2016, 36(16): 5116-5125.
|
|
WANG L W, WEI Y X. Estimating the total nitrogen and total phosphorus content of wetland soils using hyperspectral models[J]. Acta ecologica sinica, 2016, 36(16): 5116-5125.
|
12 |
ZHOU W, YANG H, XIE L J, et al. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model[J]. Catena, 2021, 202: ID 105222.
|
13 |
MOHAMED E S, SALEH A M, BELAL A B, et al. Application of near-infrared reflectance for quantitative assessment of soil properties[J]. The Egyptian journal of remote sensing and space sciences, 2018, 21(1): 1-14.
|
14 |
WERE K, BUI D T, DICK Ø B, et al. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape[J]. Ecological indicators, 2015, 52: 394-403.
|
15 |
GUO H L, ZHANG R R, DAI W H, et al. Mapping soil organic matter content based on feature band selection with ZY1-02D hyperspectral satellite data in the agricultural region[J]. Agronomy, 2022, 12(9): ID 2111.
|
16 |
陶培峰. 基于航空高光谱遥感的黑土养分含量反演研究[D]. 北京: 中国地质大学(北京), 2020.
|
|
TAO P F. Inversion of nutrient content in black soil based on aerial hyperspectral remote sensing[D].Beijing: China University of Geosciences, 2020.
|
17 |
SONG Y Q, ZHAO X, SU H Y, et al. Predicting spatial variations in soil nutrients with hyperspectral remote sensing at regional scale[J]. Sensors (basel), 2018, 18(9): ID E3086.
|
18 |
王群明, 张智昊, 张成媛. 融合Sentinel-2数据的高分五号高光谱数据降尺度[J]. 遥感学报, 2023, 27(8): 1936-1950.
|
|
WANG Q M, ZHANG Z H, ZHANG C Y. Downscaling GF-5 hyperspectral images by fusing with Sentinel-2 images[J]. National remote sensing bulletin, 2023, 27(8): 1936-1950.
|
19 |
杨佳佳, 秦凯, 于秀秀, 等. 东北黑土地地质生态天空地一体化调查成果报告[R]. 中国地质调查局沈阳地质调查中心, 2019.
|
20 |
杨越超, 赵英俊, 秦凯, 等. 黑土养分含量的航空高光谱遥感预测[J]. 农业工程学报, 2019, 35(20): 94-101.
|
|
YANG Y C, ZHAO Y J, QIN K, et al. Prediction of black soil nutrient content based on airborne hyperspectral remote sensing[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(20): 94-101.
|
21 |
刘银年. "高分五号" 卫星可见短波红外高光谱相机的研制[J]. 航天返回与遥感, 2018, 39(3): 25-28.
|
|
LIU Y N. Visible-shortwave infrared hyperspectral imager of GF-5 satellite[J]. Spacecraft recovery & remote sensing, 2018, 39(3): 25-28.
|
22 |
CAO X Q, DING H C, YANG L C, et al. Near-infrared spectroscopy as a tool to assist Sargassum fusiforme quality grading: Harvest time discrimination and polyphenol prediction[J]. Postharvest biology and technology, 2022, 192: ID 112030.
|
23 |
沈聪颖. 基于GF-5光谱特征分析的东川红土地表覆被识别研究[D]. 昆明: 昆明理工大学, 2022.
|
|
SHEN C Y. Study on land cover identification of Dongchuan red land based on GF-5 spectral characteristics analysis[D]. Kunming: Kunming University of Science and Technology, 2022.
|
24 |
季超. GF-5高光谱数据预处理及地物特征提取方法分析[D]. 北京: 中国地质大学(北京), 2020.
|
|
JI C. Preprocessing of GF-5 hyperspectral data and analysis of feature extraction method[D]. Beijing: China University of Geosciences, 2020.
|
25 |
LIN L X, GAO Z Q, LIU X X. Estimation of soil total nitrogen using the synthetic color learning machine (SCLM) method and hyperspectral data[J]. Geoderma, 2020, 380: ID 114664.
|
26 |
GRAVI K A M, IBRAHIM S M. A studying the possibility of estimating soil organic carbon of soils under PINUS BRUTIA and QUERCUS AEGILOPS L. trees in sarke-duhok by using ASD fieldspec 3 spectroradiometer[J]. Science journal of university of zakho, 2020, 8(1): 34-41.
|
27 |
DANNER M, LOCHERER M, HANK T, et al. Spectral sampling with the ASD fieldspec 4: Theory, measurement, problems, interpretation[R]. Potsdam: GFZ Data Services, 2015.
|
28 |
陶培峰, 王建华, 李志忠, 等. 基于高光谱的土壤养分含量反演模型研究[J]. 地质与资源, 2020, 29(1): 68-75, 84.
|
|
TAO P F, WANG J H, LI Z Z, et al. Research of soil nutrient content inversion model based on hyperspectral data[J]. Geology and resources, 2020, 29(1): 68-75, 84.
|
29 |
周伟, 曹鑫, 王科明, 等. 土壤有机碳含量高光谱建模研究——以青藏高原三江源区为例[J]. 冰川冻土, 2023, 45(2): 823-832.
|
|
ZHOU W, CAO X, WANG K M, et al. Hyperspectral modeling of soil organic carbon content: A case study in the Three Rivers Source Region, Qinghai-Tibet Plateau[J]. Journal of glaciology and geocryology, 2023, 45(2): 823-832.
|
30 |
何英杰, 谢东海, 钟若飞. 基于高光谱影像的SG滤波算法的研究[J]. 首都师范大学学报(自然科学版), 2018, 39(2): 70-75.
|
|
HE Y J, XIE D H, ZHONG R F. Research on SG filtering algorithm based on hyperspectral image[J]. Journal of capital normal university (natural science edition), 2018, 39(2): 70-75.
|
31 |
SABINE C, EYAL B D, VISCARRA R R A, et al. Quantitative soil spectroscopy[J]. Applied & environmental soil science, 2013: ID 616578.
|
32 |
XU G, LI F N, LUO Y Q, et al. Soil total nitrogen estimation of alpine grassland using visible/near-infrared spectra: A comparison of multivariate techniques with different spectral transformations[J]. Journal of applied remote sensing, 2020, 14(1): ID 015501.
|
33 |
SILALAHI D D, MIDI H, ARASAN J, et al. Robust generalized multiplicative scatter correction algorithm on pretreatment of near infrared spectral data[J]. Vibrational spectroscopy, 2018, 97: 55-65.
|
34 |
HADJISOLOMOU E, STEFANIDIS K, HERODOTOU H, et al. Modelling freshwater eutrophication with limited limnological data using artificial neural networks[J]. Water, 2021, 13(11): ID 1590.
|
35 |
SHI T, CHEN Y, LIU H, et al. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: Feature selection[J]. Applied spectroscopy, 2014, 68(8): 831-837.
|
36 |
CHATRABGOUN O, ESMAEILBEIGI M, DANESHKHAH A, et al. A novel algorithm for classification using a low rank approximation of kernel-based support vector machines with applications[J]. Communications in statistics - simulation and computation, 2023: 1-21.
|
37 |
LIU Z F, LEI H C, LEI L, et al. Spatial prediction of total nitrogen in soil surface layer based on machine learning[J]. Sustainability, 2022, 14(19): ID 11998.
|
38 |
WANG H F, ZHANG H, LIU Y. Using a posterior probability support vector machine model to assess soil quality in Taiyuan, China[J]. Soil and tillage research, 2019, 185: 146-152.
|
39 |
WANG L, ZHAO C. Hyperspectral image processing[M]. Berlin: National Defense Industry Press, 2016.
|
40 |
WANG Y T, LI M Z, JI R H, et al. Construction of complex features for predicting soil total nitrogen content based on convolution operations[J]. Soil and tillage research, 2021, 213: ID 105109.
|