1 |
MENG R, LYU Z G, YAN J B, et al. Development of spectral disease indices for southern corn rust detection and severity classification[J]. Remote sensing, 2020, 12(19): ID 3233.
|
2 |
ZHANG J C, HUANG Y B, PU R L, et al. Monitoring plant diseases and pests through remote sensing technology: A review[J]. Computers and electronics in agriculture, 2019, 165: ID 104943.
|
3 |
KUNDU N, RANI G, DHAKA V S, et al. Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning[J]. Artificial intelligence in agriculture, 2022, 6: 276-291.
|
4 |
MARTINELLI F, SCALENGHE R, DAVINO S, et al. Advanced methods of plant disease detection: A review[J]. Agronomy for sustainable development, 2015, 35(1): 1-25.
|
5 |
孟冉, 周龙飞, 徐乐, 等. 农业遥感技术助力智慧农业发展[J]. 智慧农业导刊, 2021, 1(10): 17-24.
|
|
MENG R, ZHOU L F, XU L, et al. Agricultural remote sensing technology promotes the development of smart agriculture[J]. Journal of smart agriculture, 2021, 1(10): 17-24.
|
6 |
MENG R, GAO R J, ZHAO F, et al. Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest[J]. Remote sensing of environment, 2022, 269: 112847.
|
7 |
LYU Z G, MENG R, CHEN G S, et al. Combining multiple spectral enhancement features for improving spectroscopic asymptomatic detection and symptomatic severity classification of southern corn leaf blight[J]. Precision agriculture, 2023, 24(4): 1593-1618.
|
8 |
DU R Q, CHEN J Y, XIANG Y Z, et al. Incremental learning for crop growth parameters estimation and nitrogen diagnosis from hyperspectral data[J]. Computers and electronics in agriculture, 2023, 215: ID 108356.
|
9 |
SHI Y, HUANG W J, LUO J H, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and electronics in agriculture, 2017, 141: 171-180.
|
10 |
JAVIDAN S M, BANAKAR A, VAKILIAN K A, et al. Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning[J]. Smart agricultural technology, 2023, 3: ID 100081.
|
11 |
REN K H, DONG Y Y, HUANG W J, et al. Monitoring of winter wheat stripe rust by collaborating canopy SIF with wavelet energy coefficients[J]. Computers and electronics in agriculture, 2023, 215: ID 108366.
|
12 |
TIAN L, XUE B W, WANG Z Y, et al. Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection[J]. Remote sensing of environment, 2021, 257: ID 112350.
|
13 |
ZHAO X H, ZHANG J C, HUANG Y B, et al. Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis[J]. Computers and electronics in agriculture, 2022, 193: ID 106717.
|
14 |
NAIDU R A, PERRY E M, PIERCE F J, et al. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars[J]. Computers and electronics in agriculture, 2009, 66(1): 38-45.
|
15 |
李京, 陈云浩, 蒋金豹, 等. 用高光谱微分指数识别冬小麦条锈病害研究[J]. 科技导报, 2007, 25(6): 23-26.
|
|
LI J, CHEN Y H, JIANG J B, et al. Using hyperspectral derivative index to identify winter wheat stripe rust disease[J]. Science & technology review, 2007, 25(6): 23-26.
|
16 |
YUAN L, YAN P, HAN W Y, et al. Detection of anthracnose in tea plants based on hyperspectral imaging[J]. Computers and electronics in agriculture, 2019, 167: ID 105039.
|
17 |
HUANG W J, LAMB D W, NIU Z, et al. Identification of yellow rust in wheat using in situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision agriculture, 2007, 8(4): 187-197.
|
18 |
王姣, 李志沛, 张立福, 等. 基于棉花黄萎病多“症状”特征的植被指数构建及病情遥感监测研究[J]. 地理与地理信息科学, 2019, 35(5): 46-51.
|
|
WANG J, LI Z P, ZHANG L F, et al. Study of cotton verticillium wilt: Construction of a vegetation index based on multiple "symptoms" characteristics and remote sensing monitoring[J]. Geography and geo-information science, 2019, 35(5): 46-51.
|
19 |
YUAN L, HUANG Y B, LORAAMM R W, et al. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects[J]. Field crops research, 2014, 156: 199-207.
|
20 |
TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote sensing of environment, 1979, 8(2): 127-150.
|
21 |
PEÑUELAS J, BARET F, FILELLA I. Semiempirical indexes to assess carotenoids chlorophyll: A ratio from leaf spectral reflectance[J]. Photosynthetica, 1995, 31(2): 221-230.
|
22 |
SMITH R, ADAMS J, STEPHENS D J, et al. Forecasting wheat yield in a mediterranean-type environment from the NOAA satellite[J]. Australian journal of agricultural research, 1995, 46(1): 113-125.
|
23 |
MIRIK M, MICHELS G J, KASSYMZHANOVA-MIRIK S, et al. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat[J]. Computers and electronics in agriculture, 2006, 51(1/2): 86-98.
|
24 |
PEÑUELAS J, GAMON J A, FREDEEN A L, et al. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves[J]. Remote sensing of environment, 1994, 48(2): 135-146.
|
25 |
HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote sensing of environment, 2002, 81(2/3): 416-426.
|
26 |
MERTON R. Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index[C]// Seventh JPL airborne earth science workshop, Pasaden, CA, USA: JPL, 1998.
|
27 |
DATT B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves[J]. Remote sensing of environment, 1998, 66(2): 111-121.
|
28 |
MCMURTREY J E, CHAPPELLE E W, KIM M S, et al. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements[J]. Remote sensing of environment, 1994, 47(1): 36-44.
|
29 |
DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International journal of remote sensing, 2004, 25(23): 5403-5413.
|
30 |
GAMON J A, PEÑUELAS J, FIELD C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote sensing of environment, 1992, 41(1): 35-44.
|
31 |
DELEGIDO J, FERNANDEZ G, GANDIA S, et al. Retrieval of chlorophyll content and LAI of crops using hyperspectral techniques: Application to PROBA/CHRIS data[J]. International journal of remote sensing, 2008, 29(24): 7107-7127.
|
32 |
PENUELAS J, PINOL J, OGAYA R. Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J]. International journal of remote sensing, 1997, 18(13): 2869-2875.
|
33 |
GAO B C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote sensing of environment, 1996, 58(3): 257-266.
|
34 |
APAN A, HELD A, PHINN S, et al. Detecting sugarcane 'orange rust' disease using EO-1 hyperion hyperspectral imagery[J]. International journal of remote sensing, 2004, 25(2): 489-498.
|
35 |
HUNT E R, ROCK B N. Detection of changes in leaf water content using near- and middle-infrared reflectances[J]. Remote sensing of environment, 1989, 30(1): 43-54.
|
36 |
ZARCO-TEJADA P J, PUSHNIK J C, DOBROWSKI S, et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[J]. Remote sensing of environment, 2003, 84(2): 283-294.
|
37 |
VOGELMANN J E, ROCK B N, MOSS D M. Red edge spectral measurements from sugar maple leaves[J]. International journal of remote sensing, 1993, 14(8): 1563-1575.
|
38 |
ROBNIK-ŠIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine learning, 2003, 53(1): 23-69.
|
39 |
MAHLEIN A K, RUMPF T, WELKE P, et al. Development of spectral indices for detecting and identifying plant diseases[J]. Remote sensing of environment, 2013, 128: 21-30.
|
40 |
RUMPF T, MAHLEIN A K, STEINER U, et al. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance[J]. Computers and electronics in agriculture, 2010, 74(1): 91-99.
|
41 |
SHIRZADIFAR A, BAJWA S, NOWATZKI J, et al. Development of spectral indices for identifying glyphosate-resistant weeds[J]. Computers and electronics in agriculture, 2020, 170: ID 105276.
|
42 |
EINZMANN K, ATZBERGER C, PINNEL N, et al. Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany[J]. Remote sensing of environment, 2021, 266: ID 112676.
|
43 |
王凡, 王超, 冯美臣, 等. 基于高光谱的玉米大斑病害监测[J]. 山西农业科学, 2019, 47(6): 1065-1068.
|
|
WANG F, WANG C, FENG M C, et al. Monitoring of maize leaf blight disease based on hyperspectral[J]. Journal of Shanxi agricultural sciences, 2019, 47(6): 1065-1068.
|
44 |
张竞成, 袁琳, 王纪华, 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012, 28(20): 1-11.
|
|
ZHANG J C, YUAN L, WANG J H, et al. Research progress of crop diseases and pests monitoring based on remote sensing[J]. Transactions of the Chinese society of agricultural engineering, 2012, 28(20): 1-11.
|
45 |
GITELSON A A, MERZLYAK M N. Remote sensing of chlorophyll concentration in higher plant leaves[J]. Advances in space research, 1998, 22(5): 689-692.
|