[1] |
KITZLER F, BARTA N, NEUGSCHWANDTNER R W, et al. WE3DS: An RGB-D image dataset for semantic segmentation in agriculture[J]. Sensors, 2023, 23(5): ID 2713.
|
[2] |
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
|
[3] |
ZHOU S L, XU C, XU R, et al. Image recognition model of fraudulent websites based on image leader decision and Inception-V3 transfer learning[J]. China communications, 2024, 21(1): 215-227.
|
[4] |
HOWARD J, RUDER S. Universal language model fine-tuning for text classification[J]. Computer science, 2018, 56(1): 328-339.
|
[5] |
RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115(3): 211-252.
|
[6] |
SINGH A, KAUR J, SINGH K, et al. Deep transfer learning-based automated detection of blast disease in paddy crop[J]. Signal, image and video processing, 2024, 18(1): 569-577.
|
[7] |
YAN K, GUO X L, JI Z W, et al. Deep transfer learning for cross-species plant disease diagnosis adapting mixed subdomains[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2023, 20(4): 2555-2564.
|
[8] |
CHEN Z K, ZHANG X, CHEN S, et al. A sparse deep transfer learning model and its application for smart agriculture[J]. Wireless communications and mobile computing, 2021, 2021(1): ID 9957067.
|
[9] |
GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied soft computing, 2018, 70: 41-65.
|
[10] |
HAIDER RIZVI S M, IMRAN R, MAHMOOD A. Text classification using graph convolutional networks: A comprehensive survey[J]. ACM computing surveys, 2025, 57(8): 1-38.
|
[11] |
MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(7): 3523-3542.
|
[12] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(4): 640-651.
|
[13] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham, Germany: Springer International Publishing, 2015: 234-241.
|
[14] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.
|
[15] |
PASZKE A, CHAURASIA A, KIM S, et al. ENet: A deep neural network architecture for real-time semantic segmentation[EB/OL]. arXiv: 1606.02147, 2016.
|
[16] |
SIDDIQUE A, TABB A, MEDEIROS H. Self-supervised learning for panoptic segmentation of multiple fruit flower species[J]. IEEE robotics and automation letters, 2022, 7(4): 12387-12394.
|
[17] |
ZHOU H, YANG J Y, ZHANG T T, et al. EAS-CNN: Automatic design of convolutional neural network for remote sensing images semantic segmentation[J]. International journal of remote sensing, 2023, 44(13): 3911-3938.
|
[18] |
XU W, GUO R Y, CHEN P Y, et al. Cherry growth modeling based on Prior Distance Embedding contrastive learning: Pre-training, anomaly detection, semantic segmentation, and temporal modeling[J]. Computers and electronics in agriculture, 2024, 221: ID 108973.
|
[19] |
XU W, HU L Y, GUO R Y, et al. Image segmentation with contrastive learning for plant time-series images with priori distance embedding[C]// 2023 IEEE Smart World Congress (SWC). Piscataway, New Jersey, USA: IEEE, 2023: 1-8.
|
[20] |
ZAFAR A, SABA N, ARSHAD A, et al. Convolutional neural networks: A comprehensive evaluation and benchmarking of pooling layer variants[J]. Symmetry, 2024, 16(11): ID 1516.
|
[21] |
YANG J, MATSUSHITA B, ZHANG H R. Improving building rooftop segmentation accuracy through the optimization of UNet basic elements and image foreground-background balance[J]. ISPRS journal of photogrammetry and remote sensing, 2023, 201: 123-137.
|
[22] |
FAISAL M, LEU J S, DARMAWAN J T. Model selection of hybrid feature fusion for coffee leaf disease classification[J]. IEEE access, 2023, 11: 62281-62291.
|
[23] |
WANG J, ZHOU F, WEN S L, et al. Deep metric learning with angular loss[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2612-2620.
|
[24] |
董西伟. 有监督和半监督多视图特征学习方法研究[D]. 南京: 南京邮电大学, 2018.
|
|
DONG X W. Study of supervised and semi-supervised multi-view feature learning methods[D]. Nanjing: Nanjing university of posts and telecommunications, 2018.
|
[25] |
WANG D, CHEN X L. Research on feature fusion method based on graph convolutional networks[J]. Applied sciences, 2024, 14(13): ID 5612.
|
[26] |
MENG X B, WANG P F, YAN H R, et al. Multi-graph convolution network with jump connection for event detection[C]// 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). Piscataway, New Jersey, USA: IEEE, 2019: 744-751.
|