| [1] |
王子阳, 刘升学, 杨志蕊, 等. 玉米抗旱性的遗传解析[J]. 植物学报, 2024, 59(6): 883-902.
|
|
WANG Z Y, LIU S X, YANG Z R, et al. Genetic dissection of drought resistance in maize[J]. Chinese bulletin of botany, 2024, 59(6): 883-902.
|
| [2] |
QIAO S C, TIAN Y W, SONG P, et al. Analysis and detection of decayed blueberry by low field nuclear magnetic resonance and imaging[J]. Postharvest biology and technology, 2019, 156: ID 110951.
|
| [3] |
苏俊楷, 段先华, 叶赵兵. 改进YOLOv5算法的玉米病害检测研究[J]. 计算机科学与探索, 2023, 17(4): 933-941.
|
|
SU J K, DUAN X H, YE Z B. Research on corn disease detection based on improved YOLOv5 algorithm[J]. Journal of frontiers of computer science and technology, 2023, 17(4): 933-941.
|
| [4] |
乔世成, 党珊珊, 何海祝, 等. 基于卷积神经网络的农作物病害检测研究综述[J]. 山西农业大学学报(自然科学版), 2025, 45(2): 113-127.
|
|
QIAO S C, DANG S S, HE H Z, et al. A review of crop disease detection research based on convolutional neural networks[J]. Journal of Shanxi agricultural university (natural science edition), 2025, 45(2): 113-127.
|
| [5] |
骆润玫, 王卫星. 基于卷积神经网络的植物病虫害识别研究综述[J]. 自动化与信息工程, 2021, 42(5): 1-10.
|
|
LUO R M, WANG W X. Review on plant disease and pest identification based on convolutional neural network[J]. Automation & information engineering, 2021, 42(5): 1-10.
|
| [6] |
李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述[J]. 计算机工程, 2022, 48(7): 1-12.
|
|
LI K Q, CHEN Y, LIU J C, et al. Survey of deep learning-based object detection algorithms[J]. Computer engineering, 2022, 48(7): 1-12.
|
| [7] |
ZOU L Z, WU D, LU L Q. Plant leaf recognition based on mask R-CNN[J]. Journal of research in science and engineering, 2025, 7(3): 55-58.
|
| [8] |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2015: 1440-1448.
|
| [9] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
| [10] |
范晓飞, 王林柏, 刘景艳, 等. 基于改进YOLOv4的玉米种子外观品质检测方法[J]. 农业机械学报, 2022, 53(7): 226-233.
|
|
FAN X F, WANG L B, LIU J Y, et al. Corn seed appearance quality estimation based on improved YOLOv4[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(7): 226-233.
|
| [11] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 779-788.
|
| [12] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]// Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
| [13] |
HU R J, ZHANG S, WANG P, et al. The identification of corn leaf diseases based on transfer learning and data augmentation[C]// Proceedings of the 2020 3rd International Conference on Computer Science and Software Engineering. New York, USA: ACM, 2020: 58-65.
|
| [14] |
WANG G W, WANG J X, YU H Y, et al. Research on identification of corn disease occurrence degree based on improved ResNeXt network[J]. International journal of pattern recognition and artificial intelligence, 2022, 36(2): ID 2250005.
|
| [15] |
施杰, 林双双, 张威, 等. 基于轻量化改进型YOLOv5s的玉米病虫害检测方法[J]. 江苏农业学报, 2024, 40(3): 427-437.
|
|
SHI J, LIN S S, ZHANG W, et al. A corn disease and pest detection method based on lightweight improved YOLOv5s[J]. Jiangsu journal of agricultural sciences, 2024, 40(3): 427-437.
|
| [16] |
马中杰, 罗晨, 骆巍, 等. 基于改进YOLOv7-tiny的玉米种质资源雄穗检测方法[J]. 农业机械学报, 2024, 55(7): 290-297.
|
|
MA Z J, LUO C, LUO W, et al. Tassel detection method of maize germplasm resources based on improved YOLOv7-tiny[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(7): 290-297.
|
| [17] |
党珊珊, 白明宇, 路扬, 等. 基于改进YOLOv10n的玉米叶片病害检测研究[J]. 内蒙古民族大学学报(自然科学版), 2025, 40(2): 69-76.
|
|
DANG S S, BAI M Y, LU Y, et al. Research on maize leaf disease detection based on improved YOLOv10n[J]. Journal of Inner Mongolia minzu university (natural sciences edition), 2025, 40(2): 69-76.
|
| [18] |
李军, 房志远, 周昊星. 改进YOLOv10的天台光伏涉电区域行为人预警算法[J]. 计算机工程与应用, 2025, 61(5): 211-221.
|
|
LI J, FANG Z Y, ZHOU H X. Improvement of early warning algorithm of YOLOv10 for actors in rooftop photovoltaic power-related area[J]. Computer engineering and applications, 2025, 61(5): 211-221.
|
| [19] |
高立鹏, 周孟然, 胡锋, 等. 基于REIW-YOLOv10n的井下安全帽小目标检测算法[J/OL]. 煤炭科学技术, 1-13 [2025-08-08].
|
|
GAO L P, ZHOU M R, HU F, et al. Small target detection algorithm for underground helmet based on REIW-YOLOv 10n[J/OL]. Coal science and technology, 1-13 [2025-08-08].
|
| [20] |
李金瑞, 杜建军, 张宏鸣, 等. 基于轻量化MLCE-RTMDet的人工去雄后玉米雄穗检测算法[J]. 农业机械学报, 2024, 55(11): 184-192, 503.
|
|
LI J R, DU J J, ZHANG H M, et al. Maize tassel detection algorithm after artificial emasculation based on lightweight MLCE-RTMDet[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(11): 184-192, 503.
|
| [21] |
YUAN W X, LAN L F, XU J Y, et al. Smart agricultural pest detection using I-YOLOv10-SC: An improved object detection framework[J]. Agronomy, 2025, 15(1): ID 221.
|
| [22] |
TAN M X, PANG R M, LE Q V. EfficientDet: Scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020. Seattle, WA, USA. IEEE, 2020: 10778-10787.
|
| [23] |
SHI Y, WANG H, WANG F, et al. Efficient and accurate tobacco leaf maturity detection: An improved YOLOv10 model with DCNv3 and efficient local attention integration[J]. Frontiers in plant science, 2024, 15: ID 1474207.
|
| [24] |
ZHANG X, SONG Y, SONG T, et al. AKConv: convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[J]. Arxiv preprint arxiv: 2311. 11587, 2023.
|
| [25] |
PAN W, CHEN J B, LV B J, et al. Lightweight marine biodetection model based on improved YOLOv10[J]. Alexandria engineering journal, 2025, 119: 379-390.
|
| [26] |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: A lightweight-design for real-time detector architectures[J]. Journal of real-time image processing, 2024, 21(3): ID 62.
|
| [27] |
HU S, GAO F, ZHOU X W, et al. Hybrid convolutional and attention network for hyperspectral image denoising[J]. IEEE geoscience and remote sensing letters, 2024, 21: 1-5.
|
| [28] |
NGUGI H N, EZUGWU A E, AKINYELU A A, et al. Revolutionizing crop disease detection with computational deep learning: A comprehensive review[J]. Environmental monitoring and assessment, 2024, 196(3): ID 302.
|
| [29] |
ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2024: 16965-16974.
|
| [30] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International journal of computer vision, 2020, 128(2): 336-359.
|
| [31] |
FAN Q, HUANG H, GUAN J, et al. Rethinking local perception in lightweight vision transformer[J]. Arxiv preprint arxiv:2303.17803, 2023.
|
| [32] |
DAI Z, LIU H, LE Q V, et al. Coatnet: Marrying convolution and attention for all data sizes[J]. Advances in neural information processing systems, 2021, 34: 3965-3977.
|
| [33] |
PAN X R, GE C J, LU R, et al. On the integration of self-attention and convolution[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2022: 805-815.
|