1 |
ARASUMANI M, BUNYAN M, ROBIN V V. Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands[J]. Journal of environmental management, 2021, 280: ID 111759.
|
2 |
AL-ALI Z M, ABDULLAH M M, ASADALLA N B, et al. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor[J]. Environmental monitoring and assessment, 2020, 192(6): ID 389.
|
3 |
LI D J, XU D Y, WANG Z Y, et al. Ecological compensation for desertification control: A review[J]. Journal of geographical sciences, 2018, 28(3): 367-384.
|
4 |
HAO Z B, POST C J, MIKHAILOVA E A, et al. How does sample labeling and distribution affect the accuracy and efficiency of a deep learning model for individual tree-crown detection and delineation[J]. Remote sensing, 2022, 14(7): ID 1561.
|
5 |
KUMAR P, DEBELE S E, SAHANI J, et al. An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards[J]. Earth-science reviews, 2021, 217: ID 103603.
|
6 |
KOURGIALAS N N, KOUBOURIS G C, DOKOU Z. Optimal irrigation planning for addressing current or future water scarcity in Mediterranean tree crops[J]. Science of the total environment, 2019, 654: 616-632.
|
7 |
李妹燕, 李芬, 徐景秀. 基于机器学习方法的高光谱遥感图像目标检测研究[J]. 激光杂志, 2024, 45(10): 108-113.
|
|
LI M Y, LI F, XU J X. Research on target detection in hyperspectral remote sensing images based on machine learning methods[J]. Laser journal, 2024, 45(10): 108-113.
|
8 |
林晓林, 孙俊. 基于机器学习的小目标检测与追踪的算法研究[J]. 计算机应用研究, 2018, 35(11): 3450-3453, 3457.
|
|
LIN X L, SUN J. Research on small object detection and tracking algorithm based on machine learning[J]. Application research of computers, 2018, 35(11): 3450-3453, 3457.
|
9 |
叶昕怡, 高思莉, 李范鸣. 基于自适应对比度增强的红外小目标检测网络(英文)[J]. 红外与毫米波学报, 2023, 42(5): 701-710.
|
|
YE X Y, GAO S L, LI F M. ACE-STDN: An infrared small target detection network with adaptive contrast enhancement[J]. Journal of infrared and millimeter waves, 2023, 42(5): 701-710.
|
10 |
彭小丹, 陈锋军, 朱学岩, 等. 基于无人机图像和改进LSC-CNN模型的密集苗木检测和计数方法[J]. 智慧农业(中英文), 2024, 6(5): 88-97.
|
|
PENG X D, CHEN F J, ZHU X Y, et al. Dense nursery stock detecting and counting based on UAV aerial images and improved LSC-CNN[J]. Smart agriculture, 2024, 6(5): 88-97.
|
11 |
林两魁, 王少游, 唐忠兴. 基于深度卷积神经网络的红外过采样扫描图像点目标检测方法[J]. 红外与毫米波学报, 2018, 37(2): 219-226.
|
|
LIN L K, WANG S Y, TANG Z X. Point target detection in infrared over-sampling scanning images using deep convolutional neural networks[J]. Journal of infrared and millimeter waves, 2018, 37(2): 219-226.
|
12 |
HAO Y, ZHANG C X, LI X Y. Research on defect detection method of bearing dust cover based on machine vision and multi-feature fusion algorithm[J]. Measurement science and technology, 2023, 34(10): ID 105016.
|
13 |
HUANG G B, BAI Z, KASUN L L C, et al. Local receptive fields based extreme learning machine[J]. IEEE computational intelligence magazine, 2015, 10(2): 18-29.
|
14 |
WU Y H, LIU Y, ZHANG L, et al. EDN: Salient object detection via extremely-downsampled network[J]. IEEE transactions on image processing, 2022, 31: 3125-3136.
|
15 |
LI S L, ZHANG S J, XUE J X, et al. A fast neural network based on attention mechanisms for detecting field flat jujube[J]. Agriculture, 2022, 12(5): ID 717.
|
16 |
ZHANG X, SONG Y, SONG T, et al. AKConv: Convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters [EB/OL]. arXiv: 231111587, 2023.
|
17 |
NIU Z Y, ZHONG G Q, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
|
18 |
WU Z W, WANG X F, JIA M, et al. Dense object detection methods in RAW UAV imagery based on YOLOv8[J]. Scientific reports, 2024, 14: ID 18019.
|
19 |
DOMINIAK K N, KRISTENSEN A R. Prioritizing alarms from sensor-based detection models in livestock production: A review on model performance and alarm reducing methods[J]. Computers and electronics in agriculture, 2017, 133: 46-67.
|
20 |
LIU T, LU Y H, ZHANG Y, et al. A bone segmentation method based on multi-scale features fuse U2Net and improved dice loss in CT image process[J]. Biomedical signal processing and control, 2022, 77: ID 103813.
|
21 |
TAN H C, LIU X P, YIN B C, et al. MHSA-net: Multihead self-attention network for occluded person re-identification[J]. IEEE transactions on neural networks and learning systems, 2023, 34(11): 8210-8224.
|
22 |
JIN Y Q, MA J H, LIAN Y, et al. Cervical cytology screening using the fused deep learning architecture with attention mechanisms[J]. Applied soft computing, 2024, 166: ID 112202.
|
23 |
DU S J, ZHANG B F, ZHANG P, et al. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]// 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). Piscataway, New Jersey, USA: IEEE, 2021.
|
24 |
HUANG P P, TIAN S H, SU Y, et al. IA-CIOU: An improved IOU bounding box loss function for SAR ship target detection methods[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2024, 17: 10569-10582.
|
25 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|
26 |
SHEN Y Y, ZHANG F Z, LIU D, et al. Manhattan-distance IOU loss for fast and accurate bounding box regression and object detection[J]. Neurocomputing, 2022, 500: 99-114.
|
27 |
ZHAO Y, HRYNIEWICKI M K. XGBOD: Improving supervised outlier detection with unsupervised representation learning[C]// 2018 International Joint Conference on Neural Networks (IJCNN). Piscataway, New Jersey, USA: IEEE, 2018.
|