| 1 | 中国农技推广信息平台[DB/OL]. [2023-10-20].  | 
																													
																						| 2 | 饶海笛. 基于语义的作物病虫害多模态知识问答方法研究[D]. 合肥: 安徽农业大学, 2023. | 
																													
																						|  |  RAO H D. Semantic-based multimodal knowledge question answer method for crop pests and diseases[D]. Hefei: Anhui Agricultural University, 2023. | 
																													
																						| 3 | 徐传丽, 周世杰, 吴春江. 深度学习中文本相似度计算研究综述[J]. 计算机应用与软件, 2024, 41(11): 1-14. | 
																													
																						|  |  XU C L,  ZHOU S J,  WU C J. Review of textual similarity calculation in deep learning[J]. Computer applications and software, 2024, 41(11): 1-14. | 
																													
																						| 4 |  WANG Z G,  HAMZA W,  FLORIAN R, et al. Bilateral multi-perspective matching for natural language sentences[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York, USA: ACM, 2017: 4144-4150. | 
																													
																						| 5 |  CHEN Q,  ZHU X D,  LING Z H, et al. Enhanced LSTM for natural language inference[EB/OL]. arXiv:1609.06038, 2016. | 
																													
																						| 6 |  WANG B N,  LIU K,  ZHAO J. Inner attention based recurrent neural networks for answer selection[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. San Diego, USA: ACL, 2016: 1288-1297. | 
																													
																						| 7 |  PANG L,  LAN Y Y,  GUO J F, et al. Text matching as image recognition[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. New York, USA: ACM, 2016: 2793-2799. | 
																													
																						| 8 | 庞亮, 兰艳艳, 徐君, 等. 深度文本匹配综述[J]. 计算机学报, 2017, 40(4): 985-1003. | 
																													
																						|  |  PANG L,  LAN Y Y,  XU J, et al. A survey on deep text matching[J]. Chinese journal of computers, 2017, 40(4): 985-1003. | 
																													
																						| 9 |  DEVLIN J,  CHANG M W,  LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. arXiv:1810.04805, 2018. | 
																													
																						| 10 | 代翔, 孙海春, 牛硕, 等. 融合互注意力机制与BERT的中文问答匹配技术研究[J]. 信息网络安全, 2021, 21(12): 102-108. | 
																													
																						|  |  DAI X,  SUN H C,  NIU S, et al. Research on Chinese question answering matching based on mutual attention mechanism and bert[J]. Netinfo security, 2021, 21(12): 102-108. | 
																													
																						| 11 | 马新宇, 范意兴, 郭嘉丰, 等. 关于短文本匹配的泛化性和迁移性的研究分析[J]. 计算机研究与发展, 2022, 59(1): 118-126. | 
																													
																						|  |  MA X Y,  FAN Y X,  GUO J F, et al. An empirical investigation of generalization and transfer in short text matching[J]. Journal of computer research and development, 2022, 59(1): 118-126. | 
																													
																						| 12 |  REIMERS N,  GUREVYCH I. Sentence-BERT: Sentence embeddings using Siamese BERT-networks[EB/OL]. arXiv: 1908. 10084, 2019. | 
																													
																						| 13 |  RYU M H. RE ALBERT: A lite BERT for self-supervised learning of language representations[EB/OL]. arXiv:1909.11942, 2020. | 
																													
																						| 14 |  LI J Y,  ZHANG X J,  ZHOU X B. ALBERT-based self-ensemble model with semisupervised learning and data augmentation for clinical semantic textual similarity calculation: Algorithm validation study[J]. JMIR medical informatics, 2021, 9(1): ID e23086. | 
																													
																						| 15 |  BAI J G,  WANG Y J,  CHEN Y R, et al. Syntax-BERT: Improving pre-trained transformers with syntax trees[EB/OL]. arXiv:2103.04350, 2021. | 
																													
																						| 16 |  YANG J L. An empirical study for the GPT-based LLM in paper similarity measurement[C]// 2024 5th International Conference on Electronic Communication and Artificial Intelligence (ICECAI). Piscataway, New Jersey, USA: IEEE, 2024: 814-818. | 
																													
																						| 17 |  XU S C,  WU Z H,  ZHAO H Q, et al. Reasoning before comparison: LLM-enhanced semantic similarity metrics for domain specialized text analysis[EB/OL]. arXiv: 2402.11398, 2024. | 
																													
																						| 18 | 王郝日钦, 王晓敏, 缪祎晟, 等. 基于BERT-Attention-DenseBiGRU的农业问答社区问句相似度匹配[J]. 农业机械学报, 2022, 53(1): 244-252. | 
																													
																						|  |  WANG H,  WANG X M,  MIAO Y S, et al. Densely connected BiGRU neural network based on BERT and attention mechanism for Chinese agriculture-related question similarity matching[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(1): 244-252. | 
																													
																						| 19 |  ZHOU H,  GUO X,  LIU C, et al. Question similarity measurement of Chinese crop diseases and insect pests based on mixed information extraction[J]. KSII transactions on Internet and information systems, 2021, 15(11): 3991-4010. | 
																													
																						| 20 | 王奥, 吴华瑞, 朱华吉. 基于特征增强的多方位农业问句语义匹配[J]. 西南大学学报(自然科学版), 2023, 45(6): 201-210. | 
																													
																						|  |  WANG A,  WU H R,  ZHU H J. Multi-level semantic matching of agricultural questions based on feature enhancement[J]. Journal of southwest university (natural science edition), 2023, 45(6): 201-210. | 
																													
																						| 21 | 刘志超, 王晓敏, 吴华瑞, 等. 基于BiLSTM-CNN的水稻问句相似度匹配方法研究[J]. 中国农机化学报, 2022, 43(12): 125-132. | 
																													
																						|  |  LIU Z C,  WANG X M,  WU H R, et al. Research on rice question and sentence similarity matching method based on BiLSTM-CNN[J]. Journal of Chinese agricultural mechanization, 2022, 43(12): 125-132. | 
																													
																						| 22 | 张莉, 杨明辉, 孙嘉成. 基于注意力机制和迁移学习的小样本茶叶病害识别[J]. 中国农机化学报, 2024, 45(10): 262-268. | 
																													
																						|  |  ZHANG L,  YANG M H,  SUN J C. Identification method of small sample tea leaf diseases based on attention mechanism and transfer learning[J]. Journal of Chinese agricultural mechanization, 2024, 45(10): 262-268. | 
																													
																						| 23 | 张国忠, 吕紫薇, 刘浩蓬, 等. 基于改进DenseNet和迁移学习的荷叶病虫害识别模型[J]. 农业工程学报, 2023, 39(8): 188-196. | 
																													
																						|  |  ZHANG G Z,  LYU Z W,  LIU H P, et al. Model for identifying Lotus leaf pests and diseases using improved DenseNet and transfer learning[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(8): 188-196. | 
																													
																						| 24 |  SHAFIK W,  TUFAIL A,  DE SILVA LIYANAGE C, et al. Using transfer learning-based plant disease classification and detection for sustainable agriculture[J]. BMC plant biology, 2024, 24(1): ID 136. | 
																													
																						| 25 |  LIU Z H,  LI J H,  ASHRAF M, et al. Remote sensing-enhanced transfer learning approach for agricultural damage and change detection: A deep learning perspective[J]. Big data research, 2024, 36: ID 100449. | 
																													
																						| 26 |  BRITO D F,  CARDOSO J L,  DOS REIS J C, et al. Exploring supervised techniques for automated recognition of intention classes from Portuguese free texts on agriculture[J]. Revista de informática Teórica e aplicada, 2022, 29(2): 95-120. | 
																													
																						| 27 |  LIU X,  CHEN Q,  DENG C, et al. Lcqmc: A large-scale chinese question matching corpus[C]// Proceedings of the 27th international conference on computational linguistics. San Diego, USA: ACL, 2018: 1952-1962. | 
																													
																						| 28 |  MUELLER J,  THYAGARAJAN A,  MUELLER J, et al. Siamese recurrent architectures for learning sentence similarity[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. New York, USA: ACM, 2016: 2786-2792. | 
																													
																						| 29 |  NECULOIU P,  VERSTEEGH M,  ROTARU M. Learning text similarity with Siamese recurrent networks[C]// Proceedings of the 1st Workshop on Representation Learning for NLP. San Diego, USA: ACL, 2016: 148-157. | 
																													
																						| 30 |  XIANG H,  GU J G. Research on question answering system based on Bi-LSTM and self-attention mechanism[C]// 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA). Piscataway, New Jersey, USA: IEEE, 2020: 726-730. | 
																													
																						| 31 |  SHI H X,  WANG C,  SAKAI T. A Siamese CNN architecture for learning Chinese sentence similarity[C]// Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language. San Diego, USA: ACL, 2020: 24-29. | 
																													
																						| 32 |  ALSHUBAILY I. TextCNN with Attention forText Classification[EB/OL]. arXiv: 2108. 01921, 2021. | 
																													
																						| 33 |  LIU Y H, OTT M,  GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach[EB/OL]. arXiv:1907.11692, 2019. |