ZHANG Le, LI Aixue(), CHEN Liping
Received:
2025-02-27
Online:
2025-05-16
Foundation items:
National Key Research and Development Program(2022YFD2002301); National Natural Science Foundation of China Regional Joint Fund(U23A20173)
About author:
ZHANG Le, E-mail: 2222216021@stmail.ujs.edu.cn
corresponding author:
CLC Number:
ZHANG Le, LI Aixue, CHEN Liping. Electrochemical Sensors for Plant Active Small Molecule Detection: A review[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202502023.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202502023
Table 1
Electrochemical sensors for in vitro detection of plant active small molecules and performance
目标分子 | 工作电极 | 检测范围 | LOD | 检测样品 | 参考文献 |
---|---|---|---|---|---|
吲哚-3-乙酸 | Pd-ZnO/h-BN/GCE | 0.5—50 μM | 0.13 μM | 绿豆 | [ |
吲哚-3-乙酸 | ZnO NRs/CPE | 0.3—5 μM | 0.017 μM | 豆类、小麦 | [ |
吲哚-3-乙酸 | Au-3DGR/SPCE | 1.25—120 μmol/L,135—500 μmol/L | 0.15 μmol/L | 绿豆 | [ |
吲哚-3-乙酸 | AuNPs-anti/GA/PAMAM/GA/AET/Au | 10 pg/mL—10 μg/mL | 4.62 pg/mL | 向日葵幼苗茎部 | [ |
水杨酸 | ERGO-SPCE | 0.05—25 μM | — | 橙汁 | [ |
水杨酸 | LIPG/PI | 0.5—500 μM | 0.16 μM | 生菜、西瓜汁 | [ |
水杨酸 | PADs(Pencils-carbon tape/ITO) | 1—100 μM | 0.1 μM | 番茄 | [ |
赤霉素 | EPBA/ PVP/ PGE | 15—225 nmol/L | 4.97 nmol/L | 小麦、大米 | [ |
赤霉素 | MIP-ECL | 0.04—70 pmol/L | 0.016 4 pmol/L | —— | [ |
激动素 | eGr/GCE | 0.5—100 μM | 150 nmol/L | 生菜 | [ |
异戊烯腺嘌呤 | FCA-AHK4-BSA-GA | 50—400 nM | 1.5 nM | 绿豆芽 | [ |
葡萄糖 | NPPt/ GO/Gox/ Nafion | 0.1—20 mmol/L | 13 μmol/L | 番茄、黄瓜 | [ |
葡萄糖 | NiCo2O4-nafion-GCE | 0.1—10 mM | 1 nM | 芥菜叶 | [ |
维生素C | Gel-g-PS/SPE | 0.2—5 μg/L和20—600 μg/L | 0.03 μg/L | 柠檬、橙子等 | [ |
缬氨酸 | Iron modified SPEs | 0.1—0.5 M | 1 mM | —— | [ |
丝氨酸 | 0.1—0.5 mM | 2.3 mM | |||
苯丙氨酸 | 0.1—0.4 mM | 2 mM | |||
柠檬酸 | ZnO/CuO NCs/GCE | 0.15—1.05 mM | 21.78 μM | 橙子、黄瓜等 | [ |
没食子酸 | MB-GOF-GC | 50—1000 μM | 49.2 μM | 大戟 | [ |
咖啡酸 | ZnO-L-BPDC/RGO/SG-2@GCE | 0.008—40 μM | 0.96 nM | 樱桃、蓝莓等 | [ |
槲皮素 | NiCo-LDH/ Ti3C2 Tx Mxenes/GCE | 0.1—20 μM | 23 nM | 洋葱、黄柏 | [ |
槲皮素 | GCE | 0.1—15 μM | 3.1 nM | 苹果汁、梨汁等 | [ |
槲皮素 | TrpMA@QUE/MIP-GCE | 1—25 pM | 0.235 pM | 野草莓等 | |
木犀草素 | Co@NCF/MoS2-MWCNTs/GCE | 0.1 nM—1.3 μM | 0.071 nM | 菊花、花生壳、金银花 | [ |
木犀草素 | Chi/TiO2-Lac/MWCNTs-BSA /GCE | 80 nM—6 μM | 11 nM | 蒲公英 | [ |
木犀草素 | AgNPs@UiO-66/GCE | 0.07 μM—40 μM | 0.017 μM | 花生壳 | [ |
熊果酸 | G-CN、CHIT/G-CN、(Co(II)TPP)/G-CN | —— | —— | 云杉 | [ |
过氧化氢 | MWCNT-Ti3C2 Tx-Pd/GCE | 0.05—18 mM | 3.83 μM | 拟南介 | [ |
丹参酮I | AuPd-NW/CFME | 0.02—0.8 μmol/L | 20.324 nmol/L | 丹参 | [ |
隐丹参酮 | 0.1—4 μmol/L | 8.261 nmol L-1 | |||
长春新碱 | BSA/Ab/MWCNTs/GCE | 0.2—50 nM | 0.08 nM | 长春花 | [ |
脱落酸 | BSA/ ABA-Ab / GR-COOH-SA /SPE | 10 pmol/L—1 µmol/L | 10 pmol/L | 脐橙 | [ |
茉莉酸甲酯 | BSA/Anti-MeJA/Fc-GR-MWNT/SPE | 100 fM—100 µM | 31.26 fM | 葡萄、橙子 | [ |
茉莉酸甲酯 | BSA/anti-MeJA/Cu-MOFs–COOH-GO/SPE | 10 pM—100 μM | 0.35 pM | 葡萄 | [ |
芹菜素 | API/ZnONPs/TrpMA@MIP-GCE | 0.1 pM—1 pM | 0.0247 pM | 芹菜、欧芹 | [ |
色氨酸 | BSA/apt/graphene-COP/GCE | 0.1 fM—500 nM | 0.03 fM | 苹果汁 | [ |
单宁酸 | TiO2-PMS/CdTe QDs/Nf | 0.2—200 µmol/L | 60 nmol/L | —— | [ |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
DAS S,
|
52 |
|
53 |
董宏图, 周思蒙, 王清涛, 等. 基于羧基化石墨烯-海藻酸钠复合材料的脱落酸电化学免疫传感器的构建及应用[J]. 智慧农业(中英文), 2022, 4(1): 110-120.
|
|
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
63 |
谢汉钊, 杨斌, 李建平. 分子印迹传感器能量转移电化学发光法检测赤霉素[J]. 分析化学, 2020, 48(12): 1633-1641.
|
|
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
|
69 |
|
70 |
|
71 |
|
72 |
|
73 |
|
74 |
|
75 |
|
76 |
|
77 |
|
78 |
|
79 |
|
80 |
|
81 |
|
82 |
|
83 |
|
84 |
|
[1] | LIU Jifang, ZHOU Xiangyang, LI Min, HAN Shuqing, GUO Leifeng, CHI Liang, YANG Lu, WU Jianzhai. Artificial Intelligence-Driven High-Quality Development of New-Quality Productivity in Animal Husbandry: Restraining Factors, Generation Logic and Promotion Paths [J]. Smart Agriculture, 2025, 7(1): 165-177. |
[2] | ZHANG Fan, ZHOU Mengting, XIONG Benhai, YANG Zhengang, LIU Minze, FENG Wenxiao, TANG Xiangfang. Research Advances and Prospect of Intelligent Monitoring Systems for the Physiological Indicators of Beef Cattle [J]. Smart Agriculture, 2024, 6(4): 1-17. |
[3] | LIU Yang, JI Jie, PAN Deng, ZHAO Lijun, LI Mingsheng. Localization Method for Agricultural Robots Based on Fusion of LiDAR and IMU [J]. Smart Agriculture, 2024, 6(3): 94-106. |
[4] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[5] | LI Lu, GE Yuqing, ZHAO Jianlong. Capacitive Soil Moisture Sensor Based on MoS2 [J]. Smart Agriculture, 2024, 6(1): 28-35. |
[6] | WEI Qian, GAO Yuanyuan, LI Aixue. Electrochemical Immunosensor for in Situ Detection of Brassinolide [J]. Smart Agriculture, 2024, 6(1): 76-88. |
[7] | WANG Rujing. Agricultural Sensor: Research Progress, Challenges and Perspectives [J]. Smart Agriculture, 2024, 6(1): 1-17. |
[8] | CHEN Ruiyun, TIAN Wenbin, BAO Haibo, LI Duan, XIE Xinhao, ZHENG Yongjun, TAN Yu. Three-Dimensional Environment Perception Technology for Agricultural Wheeled Robots: A Review [J]. Smart Agriculture, 2023, 5(4): 16-32. |
[9] | MAO Kebiao, ZHANG Chenyang, SHI Jiancheng, WANG Xuming, GUO Zhonghua, LI Chunshu, DONG Lixin, WU Menxin, SUN Ruijing, WU Shengli, JI Dabin, JIANG Lingmei, ZHAO Tianjie, QIU Yubao, DU Yongming, XU Tongren. The Paradigm Theory and Judgment Conditions of Geophysical Parameter Retrieval Based on Artificial Intelligence [J]. Smart Agriculture, 2023, 5(2): 161-171. |
[10] | LIU Youfu, XIAO Deqin, ZHOU Jiaxin, BIAN Zhiyi, ZHAO Shengqiu, HUANG Yigui, WANG Wence. Status Quo of Waterfowl Intelligent Farming Research Review and Development Trend Analysis [J]. Smart Agriculture, 2023, 5(1): 99-110. |
[11] | GUI Zechun, ZHAO Sijian. Research Application of Artificial Intelligence in Agricultural Risk Management: A Review [J]. Smart Agriculture, 2023, 5(1): 82-98. |
[12] | ZHAO Ruixue, YANG Chenxue, ZHENG Jianhua, LI Jiao, WANG Jian. Agricultural Intelligent Knowledge Service: Overview and Future Perspectives [J]. Smart Agriculture, 2022, 4(4): 105-125. |
[13] | ZHUO Yue, DING Feng, YAN Haijun, XU Jing. Advances in Forage Crop Growth Monitoring by UAV Remote Sensing [J]. Smart Agriculture, 2022, 4(4): 35-48. |
[14] | WANG Hui, CHEN Ruipeng, YU Zhixue, HE Yue, ZHANG Fan, XIONG Benhai. Porphyrin and Semiconducting Single Wall Carbon Nanotubes based Semiconductor Field Effect Gas Sensor for Determination of Phytophthora Strawberries [J]. Smart Agriculture, 2022, 4(3): 143-151. |
[15] | GENG Wenxuan, ZHAO Junye, RUAN Jiwei, HOU Yuehui. Comparative Study of the Regulation Effects of Artificial Intelligence-Assisted Planting Strategies on Strawberry Production in Greenhouse [J]. Smart Agriculture, 2022, 4(2): 183-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||