CHANG Jian1, WANG Bingbing1, YIN Long1, LI Yanqing2, LI Zhaoxin3(
), LI Zhuang2(
)
Received:2025-03-29
Online:2025-06-06
Foundation items:China Academy of Agricultural Sciences Science and Technology Innovation Engineering Project(CAAS-CSSAE-202401)
About author:CHANG Jian, E-mail: 19398985@qq.com
corresponding author:
CLC Number:
CHANG Jian, WANG Bingbing, YIN Long, LI Yanqing, LI Zhaoxin, LI Zhuang. The Bee Pollination Recognition Model Based On The Lightweight YOLOv10n-CHL[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202502033.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202502033
Table 2
Comparative experimental results of bee pollination recognition studies across different datasets
| 模型 | 召回率 | mAP50/% | 计算效率/G | 参数量/M | ||||
|---|---|---|---|---|---|---|---|---|
| 草莓 | 蓝莓 | 菊花 | 草莓 | 蓝莓 | 菊花 | |||
| YOLOv7tiny | 81.9 | 83.6 | 84.3 | 86.4 | 88.1 | 85.7 | 13.2 | 6.0 |
| YOLOv8n | 82.4 | 83.1 | 83.7 | 86.4 | 87.6 | 86.1 | 8.2 | 3.0 |
| YOLOv11n | 82.2 | 82.9 | 84.1 | 88.7 | 86.3 | 84.4 | 6.3 | 2.5 |
| YOLOv12n | 78.4 | 83.3 | 81.6 | 87.3 | 86.4 | 85.2 | 6.3 | 2.5 |
| Faster-Rcnn | 76.2 | 71.9 | 75.1 | 80.7 | 78.3 | 79.6 | 141.3 | 41.3 |
| SSD | 70.9 | 66.5 | 69.5 | 74.8 | 73 | 70.6 | 90.8 | 23.8 |
| YOLOv10n-CHL | 82.6 | 84 | 84.8 | 89.3 | 89.5 | 88 | 5.1 | 1.3 |
| 1 |
欧阳芳, 王丽娜, 闫卓, 等. 中国农业生态系统昆虫授粉功能量与服务价值评估[J]. 生态学报, 2019, 39(1): 131-145.
|
|
|
|
| 2 |
张旭凤, 王锋, 曹嵌, 等. 不同授粉方式下砀山酥梨早期受精生理特性与授粉效果分析[J]. 山西农业科学, 2025, 53(1): 119-128.
|
|
|
|
| 3 |
朱兴赛, 袁斌, 袁德义, 等. 地熊蜂在油茶园中的访花行为与授粉效果[J]. 昆虫学报, 2025, 68(3): 311-320.
|
|
|
|
| 4 |
|
| 5 |
周中奎. 基于机器学习的智能汽车目标检测与场景增强技术研究[D]. 重庆: 重庆邮电大学, 2020.
|
|
|
|
| 6 |
秦放. 基于深度学习的昆虫图像识别研究[D]. 成都: 西南交通大学, 2018.
|
|
|
|
| 7 |
|
| 8 |
刘子毅. 基于图谱特征分析的农业虫害检测方法研究[D]. 杭州: 浙江大学, 2017.
|
|
|
|
| 9 |
|
| 10 |
杨万里, 段凌凤, 杨万能. 基于深度学习的水稻表型特征提取和穗质量预测研究[J]. 华中农业大学学报, 2021, 40(1): 227-235.
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
薛勇, 王立扬, 张瑜, 等. 基于卷积神经网络的蜜蜂采集花粉行为的识别方法[J]. 河南农业科学, 2020, 49(8): 162-172.
|
|
|
|
| 16 |
胡玲艳, 孙浩, 徐国辉, 等. 基于机器视觉的温室蓝莓花期蜜蜂授粉监测[J]. 华中农业大学学报, 2023, 42(3): 105-114.
|
|
|
|
| 17 |
孙逸飞, 丁桂玲, 路运才,等. 深度学习在蜜蜂研究中的应用[J]. 环境昆虫学报, 2023, 45(5): 1150-1160.
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
|
| 25 |
殷波. 基于改进YOLOv8的轻量化火灾检测算法[J]. 计算机科学与应用, 2024, 14(9): 47-55.
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
|
| [1] | CHANG Jian, WANG Bingbing, YIN Long, LI Yanqing, LI Zhaoxin, LI Zhuang. The Lightweight Bee Pollination Recognition Model Based On YOLOv10n-CHL [J]. Smart Agriculture, 2025, 7(3): 185-198. |
| [2] | XIE Jiyuan, ZHANG Dongyan, NIU Zhen, CHENG Tao, YUAN Feng, LIU Yaling. Accurate Detection of Tree Planting Locations in Inner Mongolia for The Three North Project Based on YOLOv10-MHSA [J]. Smart Agriculture, 2025, 7(3): 108-119. |
| [3] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [4] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
| [5] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [6] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
| [7] | JIN Xuemeng, LIANG Xiyin, DENG Pengfei. Lightweight Daylily Grading and Detection Model Based on Improved YOLOv10 [J]. Smart Agriculture, 2024, 6(5): 108-118. |
| [8] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
| [9] | YE Dapeng, JING Jun, ZHANG Zhide, LI Huihuang, WU Haoyu, XIE Limin. MSH-YOLOv8: Mushroom Small Object Detection Method with Scale Reconstruction and Fusion [J]. Smart Agriculture, 2024, 6(5): 139-152. |
| [10] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
| [11] | YANG Feng, YAO Xiaotong. Lightweighted Wheat Leaf Diseases and Pests Detection Model Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(1): 147-157. |
| [12] | XIA Xue, CHAI Xiujuan, ZHANG Ning, ZHOU Shuo, SUN Qixin, SUN Tan. A Lightweight Fruit Load Estimation Model for Edge Computing Equipment [J]. Smart Agriculture, 2023, 5(2): 1-12. |
| [13] | LI Yangde, MA Xiaohui, WANG Ji. Pineapple Maturity Analysis in Natural Environment Based on MobileNet V3-YOLOv4 [J]. Smart Agriculture, 2023, 5(2): 35-44. |
| [14] | ZHAO Yu, REN Yiping, PIAO Xinru, ZHENG Danyang, LI Dongming. Lightweight Intelligent Recognition of Saposhnikovia Divaricata (Turcz.) Schischk Originality Based on Improved ShuffleNet V2 [J]. Smart Agriculture, 2023, 5(2): 104-114. |
| [15] | XIA Ye, LEI Xiaohui, QI Yannan, XU Tao, YUAN Quanchun, PAN Jian, JIANG Saike, LYU Xiaolan. Detection of Pear Inflorescence Based on Improved Ghost-YOLOv5s-BiFPN Algorithm [J]. Smart Agriculture, 2022, 4(3): 108-119. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||