ZHAO Jun1, NIE Zhigang1,2(
), LI Guang2, LIU Jiayu1
Received:2025-05-08
Online:2025-07-09
Foundation items:Gansu Provincial Industry Support Program for Higher Education Institutions(2025CYZC-042); Major Science and Technology Project of Gansu Province(24ZD13NA019); Gansu Provincial Project Funded by Central Government Guiding Local Science and Technology Development(24ZYQA023)
About author:ZHAO Jun, E-mail: 1073324120848@st.gsau.edu.cn
corresponding author:
CLC Number:
ZHAO Jun, NIE Zhigang, LI Guang, LIU Jiayu. A Study on Corn Borer Detection Using Low-Altitude Close-Range UAV Imagery[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202505006.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505006
Table1
Ablation results of the YOLO-ESN model
| 实验 | ELA_S | 微小目标检测 | SCConv | NWD+EIoU | 参数量/M | mAP@50/% | mAP@50:95/% | 计算量/GFLOPs | 推理速度/FPS |
|---|---|---|---|---|---|---|---|---|---|
| YOLOv11 | 9.46 | 81.0 | 35.6 | 21.7 | 44.18 | ||||
| A | √ | 8.46 | 81.3 | 34.6 | 20.8 | 38.28 | |||
| B | √ | 9.57 | 85.1 | 36.8 | 28.9 | 32.51 | |||
| C | √ | 9.22 | 81.9 | 35.7 | 21.5 | 42.26 | |||
| D | √ | 9.46 | 82.9 | 36.8 | 21.7 | 44.13 | |||
| E | √ | √ | 8.61 | 86.9 | 39.5 | 28.2 | 33.49 | ||
| F | √ | √ | 8.22 | 83.5 | 35.9 | 20.6 | 36.15 | ||
| G | √ | √ | 8.46 | 83.1 | 36.2 | 20.8 | 38.39 | ||
| H | √ | √ | 9.34 | 87.3 | 39.6 | 28.8 | 32.74 | ||
| I | √ | √ | 9.57 | 86.8 | 38.4 | 28.9 | 34.31 | ||
| J | √ | √ | 9.22 | 83.4 | 36.8 | 21.5 | 43.81 | ||
| K | √ | √ | √ | 8.37 | 87.9 | 40.3 | 28 | 31.94 | |
| L | √ | √ | √ | 8.61 | 88.1 | 39.1 | 28.2 | 32.37 | |
| M | √ | √ | √ | 8.25 | 84.2 | 37.6 | 20.6 | 37.45 | |
| N | √ | √ | √ | 9.34 | 87.7 | 39.5 | 28.8 | 31.79 | |
| O | √ | √ | √ | √ | 8.37 | 88.6 | 40.5 | 28.0 | 32.48 |
Table 2
Comparative experimental results of four models in corn borer pest detection research
| 模型 | 精确率/% | 召回率/% | mAP@50/% | mAP@50:95/% | 参数量/M | 计算量/GFLOPs | 推理速度/FPS |
|---|---|---|---|---|---|---|---|
| YOLOv8 | 72.4 | 79.2 | 81.3 | 35.1 | 11.14 | 28.60 | 60.9 |
| YOLOv11 | 73.9 | 79.8 | 81.0 | 35.6 | 9.46 | 21.70 | 44.18 |
| YOLOv12 | 67.9 | 74.6 | 77.5 | 33.7 | 9.10 | 19.40 | 75.44 |
| Faster R-CNN | 70.1 | 70.6 | 73.7 | 30.8 | 137.10 | 370.21 | 15.10 |
| SSD | 65.4 | 67.2 | 70.8 | 29.1 | 26.29 | 62.75 | 23.93 |
| YOLO-ESN | 80.2 | 82.1 | 88.6 | 40.5 | 8.37 | 28.00 | 32.48 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
黎祖胜, 唐吉深, 匡迎春. 基于改进YOLOv10n的轻量化荔枝虫害小目标检测模型[J]. 智慧农业(中英文), 2025, 7(2): 146-159.
|
|
|
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
王燕, 闵红. 玉米病虫害识别与绿色防控图谱[M]. 郑州: 河南科学技术出版社, 2021.
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [1] | LI Ruijie, WANG Aidong, WU Huaxing, LI Ziqiu, FENG Xiangqian, HONG Weiyuan, TANG Xuejun, QIN Jinhua, WANG Danying, CHU Guang, ZHANG Yunbo, CHEN Song. Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths [J]. Smart Agriculture, 2025, 7(3): 89-107. |
| [2] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [3] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
| [4] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [5] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
| [6] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
| [7] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
| [8] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [9] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
| [10] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
| [11] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
| [12] | YE Dapeng, JING Jun, ZHANG Zhide, LI Huihuang, WU Haoyu, XIE Limin. MSH-YOLOv8: Mushroom Small Object Detection Method with Scale Reconstruction and Fusion [J]. Smart Agriculture, 2024, 6(5): 139-152. |
| [13] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
| [14] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
| [15] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||