HU Yumeng1, GUAN Feifan1, XIE Dongchen1, MA Ping1, YU Youben2, ZHOU Jie2, NIE Yanming1, HUANG Lyuwen1,3(
)
Received:2025-07-04
Online:2025-10-17
Foundation items:陕西省重点研发计划(2023-YBNY-219); 西北农林科技大学农业技术推广计划(Z222021411); 陕西省自然科学基础研究专项(2020JM-173)
About author:胡雨萌,硕士研究生,研究方向为生物图像处理。E-mail:yumenghu@nwafu.edu.cn
HU Yumeng, E-mail: yumenghu@nwafu.edu.cn
corresponding author:
CLC Number:
HU Yumeng, GUAN Feifan, XIE Dongchen, MA Ping, YU Youben, ZHOU Jie, NIE Yanming, HUANG Lyuwen. An Enhanced Lightweight UNet3+ for Tea Leaf Disease Diagnosis[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202507010.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202507010
Table 1
Number of images corresponding to each disease of tea leaf before and after data enhancement in segmentation study
| Disease types | Pre-enhancement | Post-enhancement |
|---|---|---|
| Tea anthracnose (Gloeosporium theae-sinensis Miyake) | 428 | 2 568 |
| Tea leaf blight (Colletotrichum camelliae Massee) | 375 | 2 250 |
| Tea red scab (Cercospora theae BreadaDe Haan) | 486 | 2 916 |
| Tea blister blight (Exobasidium vexans Masse) | 469 | 2 814 |
| Tea red leaf spot (Phyllosticta theicola Petch) | 435 | 2 610 |
Table 5
Performance comparison of tea leaf spot segmentation across different models
| Model | mPA / % | mIoU / % | Precision / % | Dice / % | FPS / (img/s) | Average inference time / ms | Model size / MB |
|---|---|---|---|---|---|---|---|
| Deeplab V3+ | 88.59 | 84.38 | 94.67 | 89.85 | 22.476 2 | 44.898 6 | 10.987 4 |
| PSPNet | 91.91 | 84.81 | 86.71 | 88.78 | 9.601 5 | 44.499 6 | 9.601 5 |
| U-Net | 92.50 | 86.71 | 92.55 | 91.50 | 24.568 7 | 38.632 2 | 95.031 1 |
| UNet3+ | 93.07 | 88.78 | 94.59 | 92.96 | 20.633 6 | 48.576 1 | 143.031 8 |
| MDC-UNet3+ | 94.92 | 90.90 | 95.24 | 94.58 | 14.173 4 | 68.313 2 | 308.483 8 |
Table 6
Lightweight ablation of MDC-U-Net3+ on test set of segmentation study
| Model | FPS / (img/s) | Average training time / ms | Model size / MB |
|---|---|---|---|
| U-Net3+ (Baseline) | 20.633 6 | 48.576 1 | 143.031 8 |
| MSFFM+ U-Net3+ | 20.102 2 | 49.984 4 | 308.008 4 |
| DMSA+MSFFM+ U-Net3+ | 16.813 7 | 57.489 6 | 308.483 8 |
| MDC-U-Net3+ | 14.173 4 | 68.313 2 | 308.483 8 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [1] | WANG Yi, XUE Rong, HAN Wenting, SHAO Guomin, HOU Yanqiao, CUI Xitong. Estimation of Maize Aboveground Biomass Based on CNN-LSTM-SA [J]. Smart Agriculture, 2025, 7(4): 159-173. |
| [2] | PENG Qiujun, LI Weiran, LIU Yeqiang, LI Zhenbo. High-Precision Fish Pose Estimation Method Based on Improved HRNet [J]. Smart Agriculture, 2025, 7(3): 160-172. |
| [3] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [4] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [5] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [6] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
| [7] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [8] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
| [9] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
| [10] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
| [11] | FAN Mingshuo, ZHOU Ping, LI Miao, LI Hualong, LIU Xianwang, MA Zhirun. Automatic Navigation and Spraying Robot in Sheep Farm [J]. Smart Agriculture, 2024, 6(4): 103-115. |
| [12] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
| [13] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
| [14] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
| [15] | DAI Xin, WANG Junhao, ZHANG Yi, WANG Xinjie, LI Yanxing, DAI Baisheng, SHEN Weizheng. Automatic Detection Method of Dairy Cow Lameness from Top-view Based on the Fusion of Spatiotemporal Stream Features [J]. Smart Agriculture, 2024, 6(4): 18-28. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||