WU Zhangbin1,2,3, HE Ning3, WU Yandong3, GUO Xinyu1,3, WEN Weiliang1,2,3(
)
Received:2025-09-05
Online:2025-11-13
Foundation items:The Science and Technology Project of the Ministry of Agriculture and Rural Affairs; National Natural Science Foundation of China(32572199); National Key Research and Development Program(2022YFD2001003)
About author:WU Zhangbin, E-mail: wuzhangbin163@163.com
corresponding author:
CLC Number:
WU Zhangbin, HE Ning, WU Yandong, GUO Xinyu, WEN Weiliang. Point Cloud Data-driven Methods for Estimating Maize Leaf Biomass[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202509015.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202509015
Table 1
Feature extraction of maize leaves
| 特征 | 变量 | 简介 | Laser | MVS | DT |
|---|---|---|---|---|---|
| data source | DS | 数据来源 | ○ | ○ | ○ |
| leaf_ID | ID | 自下而上叶片的顺序 | ● | ● | ● |
| cultivar | C | 品种 | ● | ● | ● |
| leaf_growth_height | H lg | 叶片基部距地面高度 | ○ | ○ | ● |
| leaf_angle | θ | 叶倾角 | ○ | ○ | ● |
| leaf_azimuth | α | 方位角 | ○ | ○ | ● |
| leaf_length | L | 叶片长度 | ○ | ○ | ● |
| leaf_width | W | 叶片平均宽度 | ○ | ○ | ● |
| top_is_tip | TiT | 叶顶与叶尖高度是否相等 | ○ | ○ | ● |
| leaf_top_height | H top | 叶片顶部距地面高度 | ○ | ○ | ● |
| leaf_top_level_length | L topl | 叶片顶部距茎水平长度 | ○ | ○ | ● |
| leaf_tip_height | H tip | 叶片尖部距地面高度 | ○ | ○ | ● |
| leaf_tip_level_length | L tipl | 叶片尖部距茎水平长度 | ○ | ○ | ● |
| Leaf_area | S | 叶面积(网格面积) | ● | ● | ● |
| Leaf_top_curve_length | L topc | 叶片基部距叶片最高点水平长度 | ○ | ○ | ● |
| number | N | 点云中的点个数 | ● | ● | ● |
| obb_volume | V OBB | 紧密包裹点云且方向可旋转的最小长方体体积 | ● | ● | ● |
| obb_area | S OBB | 紧密包裹点云且方向可旋转的最小长方体表面积 | ● | ● | ● |
| AABB_volume | V AABB | 与坐标轴平行的最小长方体体积 | ● | ● | ● |
| AABB_area | S AABB | 与坐标轴平行的最小长方体表面积 | ● | ● | ● |
| MRB_length | L mrb | 最小外包盒对角线长度 | ● | ● | ● |
| max_distance | D max | 点云中的点到其质心的最大距离 | ● | ● | ● |
| min_distance | D min | 点云中的点到其质心的最小距离 | ● | ● | ● |
| hull_volume | V hull | 点云的最小凸多面体的体积 | ● | ● | ● |
| hull_area | S hull | 点云的最小凸多面体的表面积 | ● | ● | ● |
Table 2
Prediction accuracy of maize leaf biomass
| 方法 | Laser | DT | ||||||
|---|---|---|---|---|---|---|---|---|
| MAE | MAPE | R 2 | RMSE | MAE | MAPE | R 2 | RMSE | |
| RF | 0.14 | 8.54 | 0.93 | 0.19 | 0.31 | 21.04 | 0.83 | 0.43 |
| GBRT | 0.10 | 6.21 | 0.96 | 0.14 | 0.26 | 17.41 | 0.86 | 0.40 |
| SVR | 0.09 | 5.45 | 0.97 | 0.13 | 0.26 | 18.51 | 0.86 | 0.39 |
| CNN | 0.09 | 5.17 | 0.97 | 0.12 | 0.25 | 17.04 | 0.87 | 0.38 |
| FCNN | 0.08 | 4.60 | 0.98 | 0.10 | 0.27 | 19.87 | 0.88 | 0.36 |
| 方法 | MVS | Mix | ||||||
| MAE | MAPE | R 2 | RMSE | MAE | MAPE | R 2 | RMSE | |
| RF | 0.58 | 17.20 | 0.74 | 0.80 | 0.33 | 20.18 | 0.85 | 0.50 |
| GBRT | 0.55 | 13.88 | 0.77 | 0.76 | 0.28 | 19.45 | 0.90 | 0.41 |
| SVR | 0.40 | 10.44 | 0.87 | 0.57 | 0.25 | 17.79 | 0.91 | 0.39 |
| CNN | 0.42 | 10.41 | 0.87 | 0.56 | 0.27 | 18.11 | 0.89 | 0.42 |
| FCNN | 0.48 | 13.60 | 0.84 | 0.64 | 0.24 | 18.31 | 0.92 | 0.36 |
| [1] |
翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述[J]. 中国科学: 生命科学, 2019, 49(6): 698-716.
|
|
|
|
| [2] |
|
| [3] |
|
| [4] |
温维亮, 郭新宇, 张颖, 等. 作物表型组大数据技术及装备发展研究[J]. 中国工程科学, 2023, 25(4): 227-238.
|
|
|
|
| [5] |
|
| [6] |
|
| [7] |
赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-18.
|
|
|
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
周敏姑, 闫云才, 高文, 等. 基于多光谱遥感和CNN的玉米地上生物量估算模型[J]. 农业机械学报, 2024, 55(9): 238-248.
|
|
|
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
樊鸿叶, 李姚姚, 卢宪菊, 等. 基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究[J]. 中国农业科技导报, 2021, 23(9): 112-120.
|
|
|
|
| [16] |
王毅, 薛蓉, 韩文霆, 等. 基于CNN-LSTM-SA的玉米地上生物量估算[J]. 智慧农业(中英文), 2025, 7(4): 159-173.
|
|
|
|
| [17] |
|
| [18] |
亚森·吐尔迪, 阿丽亚·拜都热拉, 祖力甫哈尔·阿不都沙拉木, 等. 新疆农业大学校园内常见绿化树种叶片生物量估算[J]. 中国农学通报, 2017, 33(25): 48-51.
|
|
YASIN·TURDI, ALIYA·BAIDOURELA, ZULUPKAR·ABDUSALAM, et al. Leaf biomass estimation of common greening tree species in Xinjiang agricultural university campus[J]. Chinese agricultural science bulletin, 2017, 33(25): 48-51.
|
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
朱荣胜, 李帅, 孙永哲, 等. 作物三维重构技术研究现状及前景展望[J]. 智慧农业(中英文), 2021, 3(3): 94-115.
|
|
|
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
温维亮, 郭新宇, 赵春江, 等. 基于三维数字化的玉米株型参数提取方法研究[J]. 中国农业科学, 2018, 51(6): 1034-1044.
|
|
|
| [1] | BAI Ruibin, WANG Hui, WANG Hongpeng, HONG Jiashun, ZHOU Junhui, YANG Jian. Rapid and Non-Destructive Analysis Method of Hawthorn Moisture Content Based on Hyperspectral Imaging Technology [J]. Smart Agriculture, 2025, 7(4): 95-107. |
| [2] | WANG Yi, XUE Rong, HAN Wenting, SHAO Guomin, HOU Yanqiao, CUI Xitong. Estimation of Maize Aboveground Biomass Based on CNN-LSTM-SA [J]. Smart Agriculture, 2025, 7(4): 159-173. |
| [3] | WANG Yuxi, HUANG Lyuwen, DUAN Xiaolin. Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM [J]. Smart Agriculture, 2025, 7(3): 143-159. |
| [4] | LIU Long, WANG Ning, WANG Jiacheng, CAO Yuheng, ZHANG Kai, KANG Feng, WANG Yaxiong. Pruning Point Recognition and Localization for Spindle-Shaped Apple Trees During Dormant Season Using an Improved U-Net Model [J]. Smart Agriculture, 2025, 7(3): 120-130. |
| [5] | ZHAO Peiqin, LIU Changbin, ZHENG Jie, MENG Yang, MEI Xin, TAO Ting, ZHAO Qian, MEI Guangyuan, YANG Xiaodong. Improvement of HLM Modeling for Winter Wheat Yield Estimation Under Drought Conditions [J]. Smart Agriculture, 2025, 7(2): 106-116. |
| [6] | WEI Yuxin, LI Qiao, TAO Hongfei, LU Chunlei, LUO Xu, MAHEMUJIANG Aihemaiti, JIANG Youwei. Agricultural Drought Monitoring in Arid Irrigated Areas Based on TVDI Combined with ICEEMDAN-ARIMA Model [J]. Smart Agriculture, 2025, 7(2): 117-131. |
| [7] | ZHU Shunyao, QU Hongjun, XIA Qian, GUO Wei, GUO Ya. Parametric Reconstruction Method of Wheat Leaf Curved Surface Based on Three-Dimensional Point Cloud [J]. Smart Agriculture, 2025, 7(1): 85-96. |
| [8] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
| [9] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
| [10] | LIU Liqi, WEI Guangyuan, ZHOU Ping. Prediction and Mapping of Soil Total Nitrogen Using GF-5 Image Based on Machine Learning Optimization Modeling [J]. Smart Agriculture, 2024, 6(5): 61-73. |
| [11] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
| [12] | YANG Lin, LIU Shuangyin, XU Longqin, HE Min, SHENG Qingfeng, HAN Jiawei. Dynamic Prediction Method for Carbon Emissions of Cold Chain Distribution Vehicle under Multi-Source Information Fusion [J]. Smart Agriculture, 2024, 6(4): 138-148. |
| [13] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
| [14] | SHEN Yanyan, ZHAO Yutao, CHEN Gengshen, LYU Zhengang, ZHAO Feng, YANG Wanneng, MENG Ran. Identification and Severity Classification of Typical Maize Foliar Diseases Based on Hyperspectral Data [J]. Smart Agriculture, 2024, 6(2): 28-39. |
| [15] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||