1 |
HAN P C, MA C B, CHEN J, et al. Fast tree detection and counting on UAVs for sequential aerial images with generating orthophoto mosaicing[J]. Remote sensing, 2022, 14(16): ID 4113.
|
2 |
YAO L, LIU T, QIN J, et al. Tree counting with high spatial-resolution satellite imagery based on deep neural networks[J]. Ecological indicators, 2021, 125: ID 107591.
|
3 |
DONMEZ C, VILLI O, BERBEROGLU S, et al. Computer vision-based citrus tree detection in a cultivated environment using UAV imagery[J]. Computers and electronics in agriculture, 2021, 187: ID 106273.
|
4 |
TONG P M, HAN P C, LI S C, et al. Counting trees with point-wise supervised segmentation network[J]. Engineering applications of artificial intelligence, 2021, 100: ID 104172.
|
5 |
JINTASUTTISAK T, EDIRISINGHE E, ELBATTAY A. Deep neural network based date palm tree detection in drone imagery[J]. Computers and electronics in agriculture, 2022, 192: ID 106560.
|
6 |
EGI Y, HAJYZADEH M, EYCEYURT E. Drone-computer communication based tomato generative organ counting model using YOLO V5 and deep-sort[J]. Agriculture, 2022, 12(9): ID 1290.
|
7 |
OCER N E, KAPLAN G, ERDEM F, et al. Tree extraction from multi-scale UAV images using Mask R-CNN with FPN[J]. Remote sensing letters, 2020, 11(9): 847-856.
|
8 |
ZHU Y C, ZHOU J, YANG Y H, et al. Rapid target detection of fruit trees using UAV imaging and improved light YOLOv4 algorithm[J]. Remote sensing, 2022, 14(17): ID 4324.
|
9 |
SONG Q Y, WANG C G, JIANG Z K, et al. Rethinking counting and localization in crowds: A purely point-based framework[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2021: 3345-3354.
|
10 |
ZHU G Y, ZENG X, JIN X J, et al. Metro passengers counting and density estimation via dilated-transposed fully convolutional neural network[J]. Knowledge and information systems, 2021, 63(6): 1557-1575.
|
11 |
LIU L, LU H, LI Y, et al. High-throughput rice density estimation from transplantation to tillering stages using deep networks[J]. Plant phenomics, 2020, 2020: ID 1375957.
|
12 |
MA Y Y, SUN Z L, ZENG Z G, et al. Corn-plant counting using scare-aware feature and channel interdependence[J]. IEEE geoscience and remote sensing letters, 2022, 19: 1-5.
|
13 |
LU H, LIU L, LI Y N, et al. TasselNetV3: Explainable plant counting with guided upsampling and background suppression[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-15.
|
14 |
MA Z H, WEI X, HONG X P, et al. Bayesian loss for crowd count estimation with point supervision[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 6141-6150.
|
15 |
ZOU H, LU H, LI Y, et al. Maize tassels detection: A benchmark of the state of the art[J]. Plant methods, 2020, 16: ID 108.
|
16 |
BAI X, LIU P, CAO Z, et al. Rice plant counting, locating, and sizing method based on high-throughput UAV RGB images[J]. Plant phenomics, 2023, 5: ID 0020.
|
17 |
SAM D B, PERI S V, SUNDARARAMAN M N, et al. Locate, size, and count: Accurately resolving people in dense crowds via detection[J]. IEEE trans pattern anal Mach intell, 2021, 43(8): 2739-2751.
|
18 |
CHEN G, SHANG Y. Transformer for tree counting in aerial images[J]. Remote sensing, 2022, 14(3): ID 476.
|
19 |
AMIRKOLAEE H A, SHI M J, MULLIGAN M. TreeFormer: A semi-supervised transformer-based framework for tree counting from a single high-resolution image[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 1-15.
|
20 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
21 |
JIANG K L, XIE T Y, YAN R, et al. An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation[J]. Agriculture, 2022, 12(10): ID 1659.
|
22 |
LU S L, SONG Z, CHEN W K, et al. Counting dense leaves under natural environments via an improved deep-learning-based object detection algorithm[J]. Agriculture, 2021, 11(10): ID 1003.
|
23 |
LIU W X, ZHOU J, WANG B W, et al. IntegrateNet: A deep learning network for maize stand counting from UAV imagery by integrating density and local count maps[J]. IEEE geoscience and remote sensing letters, 2022, 19: 1-5.
|
24 |
GAO G S, LIU Q J, HU Z H, et al. PSGCNet: A pyramidal scale and global context guided network for dense object counting in remote-sensing images[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-12.
|
25 |
LIU W Z, SALZMANN M, FUA P. Context-aware crowd counting[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 5094-5103.
|
26 |
LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 1091-1100.
|
27 |
LIANG D K, XU W, BAI X. An end-to-end transformer model for Crowd localization[M]// Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 38-54.
|