| 1 | 
																						 
											  何微, 李俊, 王晓梅, 等. 全球油菜产业现状与我国油菜产业问题、对策[J]. 中国油脂, 2022, 47(2):1-7. 
											 											 | 
										
																													
																						 | 
																						 
											   HE W,  LI J,  WANG X M, et al. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China[J]. China oils and fats, 2022, 47(2):1-7. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   KONG W W,  ZHANG C,  HUANG W H, et al. Application of hyperspectral imaging to detect sclerotinia sclerotiorum on oilseed rape stems[J]. Sensors, 2018, 18(1): ID 123. 
											 											 | 
										
																													
																						| 3 | 
																						 
											  高振, 赵春江, 杨桂燕, 等. 典型拉曼光谱技术及其在农业检测中应用研究进展[J]. 智慧农业(中英文), 2022, 4(2): 121-134. 
											 											 | 
										
																													
																						 | 
																						 
											   GAO Z,  ZHAO C J,  YANG G Y, et al. Typical raman spectroscopy ttechnology and research progress in agriculture detection[J]. Smart Agriculture, 2022, 4(2): 121-134. 
											 											 | 
										
																													
																						| 4 | 
																						 
											  马盼, 杨子恒, 万虎, 等. 基于YOLOv8网络的棉蚜图像识别算法及软件系统设计[J]. 智能化农业装备学报(中英文), 2023, 4(3): 42-49. 
											 											 | 
										
																													
																						 | 
																						 
											   MA P,  YANG Z H,  WAN H, et al. A new cotton aphid image recognition algorithm and software based on YOLOv8[J]. Journal of intelligent agricultural mechanization, 2023, 4(3): 42-49. 
											 											 | 
										
																													
																						| 5 | 
																						 
											  戴佩玉, 张欣, 毛星, 等. 利用空间-光谱双分支特征和动态选择的高光谱影像农作物分类[J]. 农业工程学报, 2023, 39(16): 160-170. 
											 											 | 
										
																													
																						 | 
																						 
											   DAI P Y,  ZHANG X,  MAO X, et al. Classifying crops from hyperspectral images using spatial-spectral dual branches and dynamic feature selection[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(16): 160-170. 
											 											 | 
										
																													
																						| 6 | 
																						 
											   YE Z,  TAN X,  DAI M, et al. A hyperspectral deep learning attention model for predicting lettuce chlorophyll content[J]. Plant methods, 2024, 20(1): ID 22. 
											 											 | 
										
																													
																						| 7 | 
																						 
											  卢晶晶, 赵津, 申童, 等. 作物菌核病病原菌致病机制及菌核病防治研究进展[J]. 黑龙江农业科学, 2022(8): 128-133. 
											 											 | 
										
																													
																						 | 
																						 
											   LU J J,  ZHAO J,  SHEN T, et al. Research progress on pathogenic mechanisms and control of sclerotinia-derived stem rot disease[J]. Heilongjiang agricultural sciences, 2022(8): 128-133. 
											 											 | 
										
																													
																						| 8 | 
																						 
											   IMANI M,  GHASSEMIAN H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges[J]. Information fusion, 2020, 59: 59-83. 
											 											 | 
										
																													
																						| 9 | 
																						 
											   DATTA D,  MALLICK P K,  BHOI A K, et al. Hyperspectral image classification: Potentials, challenges, and future directions[J]. Computational intelligence and neuroscience, 2022, 2022: ID 3854635. 
											 											 | 
										
																													
																						| 10 | 
																						 
											   MEDJAHED S A,  OUALI M. Band selection based on optimization approach for hyperspectral image classification[J]. The egyptian journal of remote sensing and space science, 2018, 21(3): 413-418. 
											 											 | 
										
																													
																						| 11 | 
																						 
											   RASTI B,  HONG D F,  HANG R L, et al. Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox[J]. IEEE geoscience and remote sensing magazine, 2020, 8(4): 60-88. 
											 											 | 
										
																													
																						| 12 | 
																						 
											   TU B,  LI N Y,  FANG L Y, et al. Hyperspectral image classification with multi-scale feature extraction[J]. Remote sensing, 2019, 11(5): ID 534. 
											 											 | 
										
																													
																						| 13 | 
																						 
											   KUMAR B,  DIKSHIT O,  GUPTA A, et al. Feature extraction for hyperspectral image classification: A review[J]. International journal of remote sensing, 2020, 41(16): 6248-6287. 
											 											 | 
										
																													
																						| 14 | 
																						 
											  叶珍, 白璘, 何明一. 高光谱图像空-谱特征提取综述[J]. 中国图象图形学报, 2021, 26(8):1737-1763. 
											 											 | 
										
																													
																						 | 
																						 
											   YE Z,  BAI L,  HE M Y. Review of spatial-spectral feature extraction for hyperspectral image[J]. Journal of image and graphics, 2021, 26(8):1737-1763. 
											 											 | 
										
																													
																						| 15 | 
																						 
											  张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望[J]. 自动化学报, 2018, 44(6):961-977. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHANG H K,  LI Y,  JIANG Y N. Deep learning for hyperspectral imagery classification: The state of the art and prospects[J]. Acta automatica sinica, 2018, 44(6):961-977. 
											 											 | 
										
																													
																						| 16 | 
																						 
											   CHEN Y S,  LIN Z H,  ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(6): 2094-2107. 
											 											 | 
										
																													
																						| 17 | 
																						 
											  李想, 胡肖楠, 李方一, 等. 苹果树叶多病害及不可辨别病害的轻量识别算法[J]. 农业工程学报, 2023, 39(14): 184-190. 
											 											 | 
										
																													
																						 | 
																						 
											   LI X,  HU X N,  LI F Y, et al. Lightweight recognition for multiple and indistinguishable diseases of apple tree leaf[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(14): 184-190. 
											 											 | 
										
																													
																						| 18 | 
																						 
											   LI S T,  SONG W W,  FANG L Y, et al. Deep learning for hyperspectral image classification: An overview[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(9): 6690-6709. 
											 											 | 
										
																													
																						| 19 | 
																						 
											   VIEL F,  MACIEL R C,  SEMAN L O, et al. Hyperspectral image classification: An analysis employing CNN, LSTM, transformer, and attention mechanism[J]. IEEE access, 2023, 11: 24835-24850. 
											 											 | 
										
																													
																						| 20 | 
																						 
											   HAMIDA ABEN,  BENOIT A,  LAMBERT P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(8): 4420-4434. 
											 											 | 
										
																													
																						| 21 | 
																						 
											   MOU L C,  GHAMISI P,  ZHU X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2017, 55(7): 3639-3655. 
											 											 | 
										
																													
																						| 22 | 
																						 
											   HONG D F,  HAN Z,  YAO J, et al. SpectralFormer: Rethinking hyperspectral image classification with transformers[J]. IEEE transactions on geoscience and remote sensing, 2021, 60: ID 5518615. 
											 											 | 
										
																													
																						| 23 | 
																						 
											   MEI S H,  LI X G,  LIU X, et al. Hyperspectral image classification using attention-based bidirectional long short-term memory network[J]. IEEE transactions on geoscience and remote sensing, 2034, 60: ID 5509612. 
											 											 | 
										
																													
																						| 24 | 
																						 
											   WU G Q,  NING X,  HOU L Y, et al. Three-dimensional softmax mechanism guided bidirectional GRU networks for hyperspectral remote sensing image classification[J]. Signal processing, 2023, 212: ID 109151. 
											 											 | 
										
																													
																						| 25 | 
																						 
											   HU W S,  LI H C,  PAN L, et al. Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(6): 4237-4250. 
											 											 |