[1] |
李乾, 王玉斌, 石自忠. 我国肉牛良种补贴政策评价及反思[J]. 中国农业大学学报, 2019, 24(11): 234-240.
|
|
LI Q, WANG Y B, SHI Z Z. Evaluation and reflection of the beef cattle improved variety subsidy policy in China[J]. Journal of China agricultural university, 2019, 24(11): 234-240.
|
[2] |
宋一凡, 王娟, 李建丽, 等. 精准化养殖模式下牛只个体识别方法综述[J]. 黑龙江畜牧兽医, 2021(22): 48-53, 148-149.
|
|
SONG Y F, WANG J, LI J L, et al. Review of individual identification methods for cattle in precision breeding mode[J]. Heilongjiang animal science and veterinary medicine, 2021(22): 48-53, 148-149.
|
[3] |
AWAD A I. From classical methods to animal biometrics: A review on cattle identification and tracking[J]. Computers and electronics in agriculture, 2016, 123: 423-435.
|
[4] |
张宇. 基于深度学习的肉牛体侧识别方法研究[D]. 包头: 内蒙古科技大学, 2023.
|
|
ZHANG Y. Research on beef cattle body side recognition method based on deep learning[D]. Baotou: Inner Mongolia University of Science & Technology, 2023.
|
[5] |
邢永鑫, 孙游东, 王天一. 基于改进SSD算法对奶牛的个体识别[J]. 计算机工程与应用, 2022, 58(2): 208-214.
|
|
XING Y X, SUN Y D, WANG T Y. Individual recognition of dairy cow based on improved SSD algorithm[J]. Computer engineering and applications, 2022, 58(2): 208-214.
|
[6] |
宋怀波, 李嵘, 王云飞, 等. 基于ECA-YOLO v5s网络的重度遮挡肉牛目标识别方法[J]. 农业机械学报, 2023, 54(3): 274-281.
|
|
SONG H B, LI R, WANG Y F, et al. Recognition method of heavily occluded beef cattle targets based on ECA-YOLO v5s[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(3): 274-281.
|
[7] |
JIANG B, WU Q, YIN X, et al. FLYOLOv3 deep learning for key parts of dairy cow body detection[J]. Computers and electronics in agriculture, 2019, 166: ID 104982.
|
[8] |
SHEN W, HU H, DAI B, et al. Individual identification of dairy cows based on convolutional neural networks[J]. Multimedia tools and applications, 2019, 79: 14711-14724.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[EB/OL]. arXiv: 1506.02640, 2015.
|
[10] |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[EB/OL]. arXiv: 1612.08242, 2016.
|
[11] |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv: 1804.02767, 2018.
|
[12] |
BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. arXiv: 2004.10934, 2020.
|
[13] |
TIAN Y J, YE Q X, DOERMANN D. YOLOv12: Attention-centric real-time object detectors[EB/OL]. arXiv: 2502.12524,2025.
|
[14] |
ZHANG X L, SONG Y, SONG T, et al. AKConv: Convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[EB/OL]. arXiv: 2311.11587, 2023.
|
[15] |
YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: A scale and occlusion aware face detector[J]. Pattern recognition, 2024, 155: ID 110714.
|
[16] |
WANG X L, XIAO T T, JIANG Y N, et al. Repulsion loss: Detecting pedestrians in a crowd[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7774-7783.
|
[17] |
ZHANG X, ZENG H, GUO S, et al. Efficient Long-Range Attention Network for Image Super-resolution[C]// European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 649-667.
|
[18] |
LIU S, QI L, QIN H, et al. Path Aggregation Network for Instance Segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018
|
[19] |
LIN T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2017
|
[20] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7132-7141.
|
[21] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13708-13717.
|
[22] |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 11531-11539.
|
[23] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[C]// Computer Vision-ECCV 2018. Cham, Germany: Springer, 2018: 3-19.
|
[24] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
[25] |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1836-1848.
|