1 |
祁复蓉, 王福国, 周亚婷, 等. 设施芦笋高质高效栽培技术要点[J]. 农业科技与信息, 2024(7): 10-14.
|
|
QI F R, WANG F G, ZHOU Y T, et al. Key points of high quality and efficient cultivation techniques of Asparagus in facilities[J]. Agricultural science-technology and information, 2024(7): 10-14.
|
2 |
CHEN Q, XIA C, SHI Y Y, et al. A novel approach for Asparagus comprehensive classification based on TOPSIS evaluation and SVM prediction[J]. Agronomy, 2024, 14(6): ID1175.
|
3 |
俞风娟, 王继涛, 汪洋, 等. 芦笋生育特性及高产栽培技术[J]. 宁夏农林科技, 2021, 62(3): 8-11.
|
|
YU F J, WANG J T, WANG Y, et al. Growth characteristics and high-yield cultivation techniques of Asparagus [J]. Ningxia journal of agriculture and forestry science and technology, 2021, 62(3): 8-11.
|
4 |
朱德明, 程香平, 邱伊健, 等. 基于深度学习的农作物图像识别技术研究进展[J]. 江西科学, 2025, 43(1): 154-161.
|
|
ZHU D M, CHENG X P, QIU Y J, et al. Research progress on crop image recognition alg orithm based on deep learning[J]. Jiangxi science, 2025, 43(1): 154-161.
|
5 |
张润池, 周云成, 侯玉涵, 等. 基于超深掩蔽与改进YOLOv8的不同成熟度番茄计数方法[J]. 农业工程学报, 2024, 40(24): 146-156.
|
|
ZHANG R C, ZHOU Y C, HOU Y H, et al. Counting tomatoes with different maturities using ultra-depth masking and improved YOLOv8[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(24): 146-156.
|
6 |
袁杰, 谢霖伟, 郭旭, 等. 基于改进YOLO v7的苹果叶片病害检测方法[J]. 农业机械学报, 2024, 55(11): 68-74.
|
|
YUAN J, XIE L W, GUO X, et al. Apple leaf disease detection method based on improved YOLO v7[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(11): 68-74.
|
7 |
杨昊霖, 王其欢, 李华彪, 等. 基于改进YOLOv5的田间复杂环境障碍物检测[J]. 中国农机化学报, 2024, 45(6): 216-222, 256, 2.
|
|
YANG H L, WANG Q H, LI H B, et al. Obstacle detection in complex farmland environment based on improved YOLOv5[J]. Journal of Chinese agricultural mechanization, 2024, 45(6): 216-222, 256, 2.
|
8 |
李扬, 张萍, 苑进, 等. 白芦笋采收机器人视觉定位与采收路径优化方法[J]. 智慧农业(中英文), 2020, 2(4): 65-78.
|
|
LI Y, ZHANG P, YUAN J, et al. Visual positioning and harvesting path optimization of white Asparagus harvesting robot[J]. Smart agriculture, 2020, 2(4): 65-78.
|
9 |
ZHAO X Y, HE Y X, ZHANG H T, et al. A quality grade classification method for fresh tea leaves based on an improved YOLOv8x-SPPCSPC-CBAM model[J]. Scientific reports, 2024, 14: ID 4166.
|
10 |
FAN Y R, CAI Y L, YANG H J. A detection algorithm based on improved YOLOv5 for coarse-fine variety fruits[J]. Journal of food measurement and characterization, 2024, 18(2): 1338-1354.
|
11 |
汪小旵, 李为民, 王琳, 等. 基于改进YOLACT++的成熟芦笋检测-判别-定位方法[J]. 农业机械学报, 2023, 54(7): 259-271.
|
|
WANG X C, LI W M, WANG L, et al. Method of detection-discrimination-localization for mature Asparagus based on improved YOLACT + + algorithm[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(7): 259-271.
|
12 |
中华人民共和国农业部. 芦笋等级规格: NY/T 1585—2008 [S]. 北京: 中国农业出版社, 2008.
|
|
Ministry of Agriculture of the PRC. Grades and specifications of asparagus: NY/T 1585—2008 [S]. BeiJing: China agriculture press, 2008.
|
13 |
KHANAM R, HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2410.17725, 2024.
|
14 |
LIAO Y, LI L R, XIAO H Q, et al. YOLO-MECD: Citrus detection algorithm based on YOLOv11[J]. Agronomy, 2025, 15(3): ID 687.
|
15 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA. IEEE, 2020: 11531-11539.
|
16 |
LI L T, ZHAO Y D. Tea disease identification based on ECA attention mechanism ResNet50 network[J]. Frontiers in plant science, 2025, 16: ID1489655.
|
17 |
HE J J, WANG Y C, WANG Y T, et al. A lightweight road crack detection algorithm based on improved YOLOv7 model[J]. Signal, image and video processing, 2024, 18(1): 847-860.
|
18 |
WANG J L, QIN C C, HOU B B, et al. LCGSC-YOLO: A lightweight apple leaf diseases detection method based on LCNet and GSConv module under YOLO framework[J]. Frontiers in plant science, 2024, 15: ID1398277.
|
19 |
LI H, LI J, WEI H, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles[EB/OL]. arXiv: 2206.02424, 2022.
|
20 |
SHI P, ZHANG Y Y, CAO Y Q, et al. DVCW-YOLO for printed circuit board surface defect detection[J]. Applied sciences, 2025, 15(1): ID 327.
|
21 |
张荣华, 白雪, 樊江川. 复杂场景下害虫目标检测算法: YOLOv8-Extend[J]. 智慧农业(中英文), 2024, 6(2): 49-61.
|
|
ZHANG R H, BAI X, FAN J C. Crop pest target detection algorithm in complex scenes: YOLOv8-extend[J]. Smart agriculture, 2024, 6(2): 49-61.
|
22 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
ZHOU Z H. Machine learning[M]. BeiJing: Tsinghua university press, 2016.
|
23 |
俞建峰. 深度学习: 智能机器人应用的理论与实践[M]. 北京: 化学工业出版社, 2024.
|
|
YU J F. Deep learning : Theory and practice of intelligent robot applications[M]. BeiJing: Chemical industry press, 2024.
|
24 |
孙玉林. 计算机视觉从入门到进阶实战: 基于PyTorch[M]. 北京: 化学工业出版社, 2024.
|
|
SUN Y L. Computer vision from entry to advanced practice : Based on PyTorch[M]. BeiJing: Chemical industry press, 2024.
|
25 |
YANG L, ZHANG R, LI L, et al. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks[C]// Proceedings of the International Conference on Machine Learning. New York, USA: PMLR, 2021: 11863-11874.
|
26 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA. IEEE, 2018: 7132-7141.
|