| [1] |
朱友理, 何东兵, 邱晓红, 等. 病虫草危害对稻米品质的影响[J]. 中国稻米, 2021, 27(6): 115-118.
|
|
ZHU Y L, HE D B, QIU X H, et al. Effects of damage by diseases, pests and weeds on quality of rice[J]. China rice, 2021, 27(6): 115-118.
|
| [2] |
卓富彦, 陈学新, 夏玉先, 等. 2013—2022 年我国水稻病虫害发生特点与绿色防控技术集成[J].中国生物防治学报, 2024, 40(5): 1207-1213.
|
|
ZHUO F Y, CHEN X X, XIA Y X, et al. The occurrence characteristics of rice diseases and insect pests and the integration of green control technology in China from 2013 to 2022[J]. Chinese journal of biological control,2024,40(5): 1207-1213.
|
| [3] |
蔡永凤. 戊唑醇对褐飞虱的生物活性及其作用机制[D]. 武汉: 华中农业大学, 2022.
|
|
CAI Y F. The bioactivity and mechanism of tebuconazole on Nilaparvata lugens (Stål)[D]. Wuhan: Huazhong Agricultural University, 2022.
|
| [4] |
刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5): 1-9, 46.
|
|
LIU W C, LIU Z D, HUANG C, et al. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years[J]. Plant protection, 2016, 42(5): 1-9, 46.
|
| [5] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 779-788.
|
| [6] |
王君婵, 洪俐, 朱少龙, 等. 基于深度学习的病害识别方法研究[J]. 农业展望, 2023, 19(8): 90-99.
|
|
WANG J C, HONG L, ZHU S L, et al. Research on disease recognition method based on deep learning[J]. Agricultural outlook, 2023, 19(8): 90-99.
|
| [7] |
CHEN X, YANG X T, HU H, et al. DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring[J]. Ecological informatics, 2025, 86: ID 103067.
|
| [8] |
彭红星, 徐慧明, 高宗梅, 等. 基于改进YOLOF模型的田间农作物害虫检测方法[J]. 农业机械学报, 2023, 54(4): 285-294, 303.
|
|
PENG H X, XU H M, GAO Z M, et al. Insect pest detection of field crops based on improved YOLOF model[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(4): 285-294, 303.
|
| [9] |
赵辉, 黄镖, 王红君, 等. 基于改进YOLOv7的农田复杂环境下害虫识别算法研究[J]. 农业机械学报, 2023, 54(10): 246-254.
|
|
ZHAO H, HUANG B, WANG H J, et al. Pest identification method in complex farmland environment based on improved YOLOv7[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(10): 246-254.
|
| [10] |
LIU B, JIA Y X, LIU L Y, et al. Skip DETR: End-to-end Skip connection model for small object detection in forestry pest dataset[J]. Frontiers in plant science, 2023, 14: ID 1219474.
|
| [11] |
QI F, CHEN G M, LIU J Y, et al. End-to-end pest detection on an improved deformable DETR with multihead criss cross attention[J]. Ecological informatics, 2022, 72: ID 101902.
|
| [12] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7132-7141.
|
| [13] |
ZHU X, SU W, LU L, et al. Deformable DETR: Deformable transformers for end-to-end object detection [EB/OL]. arXiv: 2010.04159, 2020.
|
| [14] |
TANG K, QIAN Y R, DONG H L, et al. SP-YOLO: A real-time and efficient multi-scale model for pest detection in sugar beet fields[J]. Insects, 2025, 16(1): ID 102.
|
| [15] |
蒋心璐, 陈天恩, 王聪, 等. 大田环境下的农业害虫图像小目标检测算法[J]. 计算机工程, 2024, 50(1): 232-241.
|
|
JIANG X L, CHEN TE, WANG C, et al. Small object detection algorithm for agricultural pest images in field environments[J]. Computer engineering, 2024, 50(1): 232-241.
|
| [16] |
魏志慧, 张聪, 成泞伸, 等. 一种水稻害虫的小目标检测方法研究[J]. 江苏农业科学, 2024, 52(9): 232-241.
|
|
WEI Z H, ZHANG C, CHENG N S, et al. Study on a small target detection method for rice pests[J]. Jiangsu agricultural sciences, 2024, 52(9): 232-241.
|
| [17] |
谭泗桥, 陈涵, 朱磊, 等. 基于改进YOLOv8m的稻田害虫识别方法[J]. 农业工程学报, 2025, 41(2): 185-195.
|
|
TAN S Q, CHEN H, ZHU L, et al. Rice field pest recognition method based on improved YOLOv8m[J]. Transactions of the Chinese society of agricultural engineering, 2025, 41(2): 185-195.
|
| [18] |
ZHANG Z L, ZHAN W, SUN K L, et al. RPH-Counter: Field detection and counting of rice planthoppers using a fully convolutional network with object-level supervision[J]. Computers and electronics in agriculture, 2024, 225: ID 109242.
|
| [19] |
KHANAM R, HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2410.17725, 2024.
|
| [20] |
WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-time end to-end object detection[EB/OL]. arXiv: 2405.14458, 2024.
|
| [21] |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, New Jersey, USA: IEEE, 2023: 1-5.
|
| [22] |
SUNKARA R, LUO T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects[M]// Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2023: 443-459.
|
| [23] |
TONG Z, CHEN Y, XU Z, et al. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism[EB/OL]. arXiv: 2301.10051, 2023.
|
| [24] |
TIAN Y, YE Q, DOERMANN D. YOLOv12: Attention-centric real-time object detectors[EB/OL]. arXiv: 2502.12524, 2025.
|
| [25] |
ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2024: 16965-16974.
|
| [26] |
HOU X Q, LIU M Q, ZHANG S L, et al. Salience DETR: Enhancing detection transformer with hierarchical salience filtering refinement[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2024: 17574-17583.
|
| [27] |
HOU X Q, LIU M Q, ZHANG S L, et al. Relation DETR: Exploring explicit position relation prior for object detection[M]// Computer Vision-ECCV 2024. Cham: Springer Nature Switzerland, 2024: 89-105.
|
| [28] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
| [29] |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 11531-11539.
|
| [30] |
YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: A scale and occlusion aware face detector[J]. Pattern recognition, 2024, 155: ID 110714.
|
| [31] |
YANG L, ZHANG R Y, LI L, et al. Simam: A simple, parameter free attention module for convolutional neural networks[C]// In ternational conference on machine learning. New York, USA: PMLR, 2021: 11863-11874.
|
| [32] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International journal of computer vision, 2020, 128(2): 336-359.
|