[1] |
SIROTKIN A V, KOLESÁROVÁ A. The anti-obesity and health-promoting effects of tea and coffee[J]. Physiological research, 2021, 70(2): 161-168.
|
[2] |
ZHANG W E, ZHAO M Y, CHEN Y C, et al. Low-carbon ecological tea: The key to transforming the tea industry towards sustainability[J]. Agriculture, 2024, 14(5): ID 722.
|
[3] |
HU G S, LI S Q, WAN M Z, et al. Semantic segmentation of tea geometrid in natural scene images using discriminative pyramid network[J]. Applied soft computing, 2021, 113: ID 107984.
|
[4] |
HU G S, ZHAO Y L, BAO W X, et al. A semi-supervised detection method for multi-scale tea geometrid by integrating intra- and inter-class information in natural scene images[J]. Computers and electronics in agriculture, 2025, 237: ID 110645.
|
[5] |
姚惠明, 周孝贵. 2016年秋季茶尺蠖暴发成因分析及防治启示[J]. 中国茶叶, 2016, 38(12): 21-22.
|
|
YAO H M, ZHOU X G. Cause analysis and control enlightenment of the outbreak of Ectropis obliqua in autumn of 2016[J]. China tea, 2016, 38(12): 21-22.
|
[6] |
王志博, 毛腾飞, 白家赫, 等. 浙江省2016年茶尺蠖发生情况调查[J]. 茶叶, 2017, 43(2): 71-73.
|
|
WANG Z B, MAO T F, BAI J H, et al. An investigation on occurrence of tea looper(Lepidoptera: Geometridae) in Zhejiang Province in 2016[J]. Journal of tea, 2017, 43(2): 71-73.
|
[7] |
PATEL D, BHATT N. Improved accuracy of pest detection using augmentation approach with Faster R-CNN[J]. IOP conference series: Materials science and engineering, 2021, 1042(1): ID 012020.
|
[8] |
ZHANG Y J, MA B X, HU Y T, et al. Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model[J]. Computers and electronics in agriculture, 2022, 203: ID 107484.
|
[9] |
AZFAR S, NADEEM A, BASIT A. Pest detection and control techniques using wireless sensor network: A review[J]. Journal of entomology and zoology studies, 2015, 3(2): 92-99.
|
[10] |
BATZ P, WILL T, THIEL S, et al. From identification to forecasting: The potential of image recognition and artificial intelligence for aphid pest monitoring[J]. Frontiers in plant science, 2023, 14: ID 1150748.
|
[11] |
LI W L, CHEN P, WANG B, et al. Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline[J]. Scientific reports, 2019, 9: ID 7024.
|
[12] |
LI R, WANG R J, XIE C J, et al. A coarse-to-fine network for aphid recognition and detection in the field[J]. Biosystems engineering, 2019, 187: 39-52.
|
[13] |
FU X Q, MA Q Y, YANG F F, et al. Crop pest image recognition based on the improved ViT method[J]. Information processing in agriculture, 2024, 11(2): 249-259.
|
[14] |
WANG F Y, WANG R J, XIE C J, et al. Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild environment[J]. Computers and electronics in agriculture, 2021, 187: ID 106268.
|
[15] |
CHUDZIK P, MITCHELL A, ALKASEEM M, et al. Mobile real-time grasshopper detection and data aggregation framework[J]. Scientific reports, 2020, 10: ID 1150.
|
[16] |
BAI Z J, XIE M D, HU B F, et al. Estimation of soil organic carbon using vis-NIR spectral data and spectral feature bands selection in southern Xinjiang, China[J]. Sensors, 2022, 22(16): ID 6124.
|
[17] |
LI Y C, GUO J W, QIU H H, et al. Denoising Diffusion Probabilistic Models and Transfer Learning for Citrus disease diagnosis[J]. Frontiers in plant science, 2023, 14: ID 1267810.
|
[18] |
WU T Y, SHI L T, ZHANG L, et al. RS transformer: A two-stage region proposal using swin transformer for few-shot pest detection in automated agricultural monitoring systems[J]. Applied sciences, 2023, 13(22): ID 12206.
|
[19] |
SAPKOTA R, MENG Z C, CHURUVIJA M, et al. Comprehensive performance evaluation of YOLOv 12, YOLO11, YOLOv10, YOLOv9 and YOLOv8 on detecting and counting fruitlet in complex orchard environments[EB/OL]. arXiv: 2407.12040, 2024.
|
[20] |
WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: Learning what you want toLearn using programmable gradient information[C]// Computer Vision – ECCV 2024. Cham, German: Springer, 2025: 1-21.
|
[21] |
WANG A, CHEN H, LIU L, et al. Yolov10: Real-time end-to-end object detection[EB/OL]. arXiv: 2405.14458, 2024.
|
[22] |
KHANAM R, HUSSAIN M. Yolov11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2410.17725, 2024.
|
[23] |
HUANG Y Q, LIU Z H, ZHAO H H, et al. YOLO-YSTs: An improved YOLOv10n-based method for real-time field pest detection[J]. Agronomy, 2025, 15(3): ID 575.
|
[24] |
TANG Y D, DUAN S K, WANG L D. EC-YOLO: Enhanced YOLOv10 for agricultural pest detection[C]// 2025 5th International Conference on Consumer Electronics and Computer Engineering (ICCECE). Piscataway, New Jersey, USA: IEEE, 2025: 525-529.
|
[25] |
葛超美, 殷坤山, 唐美君, 等. 灰茶尺蠖的生物学特性[J]. 浙江农业学报, 2016, 28(3): 464-468.
|
|
GE C M, YIN K S, TANG M J, et al. Biological characteristics of Ectropis grisescens warren[J]. Acta agriculturae zhejiangensis, 2016, 28(3): 464-468.
|
[26] |
FANG H Y, HAN B R, ZHANG S, et al. Data augmentation for object detection via controllable diffusion models[C]// 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway, New Jersey, USA: IEEE, 2024: 1246-1255.
|
[27] |
XIE S N, TU Z W. Holistically-nested edge detection[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2015: 1395-1403.
|
[28] |
DOSOVITSKIY A. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. arXiv: 2010.11929, 2020.
|
[29] |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]// Proceedings of the 38th International Conference on Machine Learning. New York, USA: PMLR. 2021: 8748-8763.
|
[30] |
FENG S, HUANG Y, ZHANG N. An improved YOLOv8 OBB model for ship detection through stable diffusion data augmentation[J]. Sensors, 2024, 24(17): ID 5850.
|
[31] |
LIN J W, HU G, CHEN J. Mixed data augmentation and osprey search strategy for enhancing YOLO in tomato disease, pest, and weed detection[J]. Expert systems with applications, 2025, 264: ID 125737.
|
[32] |
ZHU X Y, CHEN F J, ZHENG Y L, et al. Detection of Camellia oleifera fruit maturity in orchards based on modified lightweight YOLO[J]. Computers and electronics in agriculture, 2024, 226: ID 109471.
|