1 | PENG J, RICHARDS D E, HARTLEY N M, et al. 'Green revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400: 256-261. | 2 | SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. Green revolution: A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416: 701-702. | 3 | KUMAR K, NEELAM K, BHATIA D, et al. High resolution genetic mapping and identification of a candidate gene(s) for the purple sheath color and plant height in an interspecific F-2 population derived from Oryza nivara Sharma & Shastry × Oryza sativa L. cross[J]. Genetic Resources and Crop Evolution, 2020, 67(1): 97-105. | 4 | LIU K, DONG X, QIU B, et al. Analysis of cotton height spatial variability based on UAV-LiDAR[J]. International Journal of Precision Agricultural Aviation, 2020, 3(3): 72-76. | 5 | 刘治开, 牛亚晓, 王毅, 等. 基于无人机可见光遥感的冬小麦株高估算[J]. 麦类作物学报, 2019, 39(7): 859-866. | 5 | LIU Z, NIU Y, WANG Y, et al. Estimation of plant height of winter wheat based on UAV visible image[J]. Journal of Triticeae Crops, 2019, 39(7): 859-866. | 6 | 黄瑞冬, 李广权. 玉米株高整齐度及其测定方法的比较[J]. 玉米科学, 1995, 3(2): 61-63. | 6 | HUANG R, LI G. Plant height consistencies in maize population and a comparison of their measuring techniques[J]. Maize Science, 1995, 3(2): 61-63. | 7 | 赵广才. 关于调查小麦株高标准的讨论[J]. 北京农业科学, 1996, 14(1): 18. | 7 | ZHAO G. Discussion on investigating high standard of wheat plant[J]. Beijing Agricultural Sciences, 1996, 14(1): 18. | 8 | 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24): 98-106. | 8 | LIU J, ZHAO C, YANG G, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the CSAE, 2016, 32(24): 98-106. | 9 | HMIDA S BEN, KALLEL A, PGASTELLU-ETCHEGORRY J, et al. Crop biophysical properties estimation based on LiDAR full-waveform inversion using the DART RTM[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 4853-4868. | 10 | 陈松尧, 程新文. 机载LiDAR系统原理及应用综述[J]. 测绘工程, 2007, 16(1): 27-31. | 10 | CHEN S, CHENG X. The principle and application of airborne LiDAR[J]. Engineering of Surveying and Mapping, 2007, 16(1): 27-31. | 11 | LI W, NIU Z, WANG C, et al. Combined use of airborne LiDAR and satellite GF-1 data to estimate leaf area index, height, and aboveground biomass of maize during peak growing season[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4489-4501. | 12 | EITEL J U, H?FLE B, VIERLING L A, et al. Beyond 3-D: The new spectrum of LiDAR applications for earth and ecological sciences[J]. Remote Sensing of Environment, 2016, 186: 372-392. | 13 | FRIEDLI M, KIRCHGESSNER N, GRIEDER C, et al. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions[J]. Plant Methods, 2016, 12: ID 9. | 14 | CROMMELINCK S, HOEFLE B. Simulating an autonomously operating low-cost static terrestrial LiDAR for multitemporal maize crop height measurements[J]. Remote Sensing, 2016, 8(3): ID 205. | 15 | EITEL J U H, MAGNEY T S, VIERLING L A, et al. An automated method to quantify crop height and calibrate satellite-derived biomass using hypertemporal LiDAR[J]. Remote Sensing of Environment, 2016, 187: 414-422. | 16 | QIU Q, SUN N, BAI H, et al. Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a "Phenomobile"[J]. Frontiers in Plant Science, 2019, 10: ID 554. | 17 | ANDUJAR D, ESCOLA A, ROSELL-POLO J R, et al. Potential of a terrestrial LiDAR-based system to characterise weed vegetation in maize crops[J]. Computers and Electronics in Agriculture, 2013, 92: 11-15. | 18 | MALAMBO L, POPESCU S C, MURRAY S C, et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 31-42. | 19 | 苏伟, 蒋坤萍, 郭浩, 等. 地基激光雷达提取大田玉米植株表型信息[J]. 农业工程学报, 2019, 35(10): 125-130. | 19 | SU W, JIANG K, GUO H, et al. Extraction of phenotypic information of maize plants in field by terrestrial laser scanning[J]. Transactions of the CSAE, 2019, 35(10): 125-130. | 20 | YUAN W, LI J, BHATTA M, et al. Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS[J]. Sensors, 2018, 18(11): ID 3731. | 21 | MADEC S, BARET F, DE SOLAN B, et al. High-throughput phenotyping of plant height: Comparing unmanned aerial vehicles and ground LiDAR Estimates[J]. Frontiers in Plant Science, 2017, 8: ID 2002. | 22 | PHAN A T T, TAKAHASHI K, RIKIMARU A, et al. Method for estimating rice plant height without ground surface detection using laser scanner measurement[J]. Journal of Applied Remote Sensing, 2016, 10(4): ID 046018. | 23 | JIMENEZ-BERNI J A, DEERY D M, PABLO R L, et al. Throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR[J]. Frontiers in Plant Science, 2018, 9: ID 237. | 24 | WANG X, SINGH D, MARLA S, et al. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies[J]. Plant Methods, 2018, 14: ID 53. | 25 | BARKER J, ZHANG N, SHARON J, et al. Development of a field-based high-throughput mobile phenotyping platform[J]. Computers and Electronics in Agriculture, 2016, 122: 74-85. | 26 | HARKEL T J, BARTHOLOMEUS H, KOOISTRA L, et al. Biomass and crop height estimation of different crops using UAV-based LiDAR[J]. Remote Sensing, 2020, 12(1): ID 17. | 27 | THOMPSON A L, THORP K R, CONLEY M M, et al. Comparing nadir and multi-angle view sensor technologies for measuring in-field plant height of upland cotton[J]. Remote Sensing, 2019, 11: ID 700. | 28 | SCHIRRMANN M, HAMDORF A, GIEBEL A, et al. Regression kriging for improving crop height models fusing ultra-sonic sensing with UAV imagery[J]. Remote Sensing, 2017, 9(7): ID 665. | 29 | YUAN H, BENNETT R S, WANG N, et al. Development of a peanut canopy measurement system using a ground-based LiDAR sensor[J]. Frontiers in Plant Science, 2019, 10: ID 203. | 30 | BARMEIER G, MISTELE B, SCHMIDHALTER U, et al. Referencing laser and ultrasonic height measurements of barley cultivars by using a herbometre as standard[J]. Crop & Pasture Science, 2016, 67(12): 1215-1222. | 31 | PITTMAN J J, ARNALL D B, INTERRANTE S M, et al. Estimation of biomass and canopy height in bermudagrass, alfalfa, and wheat using ultrasonic, laser, and spectral sensors[J]. Sensors, 2015, 15(2): 2920-2943. | 32 | 冯佳睿, 马晓丹, 关海鸥, 等. 基于深度信息的大豆株高计算方法[J]. 光学学报, 2019, 39(5): 258-268. | 32 | FENG J, MA X, GUAN H, et al. Calculation method of soybean plant height based on depth information[J]. Acta Optica Sinica, 2019, 39(5): 258-268. | 33 | MARTINEZ-GUANTER J, RIBEIRO A, PETEINATOS G G, et al. Low-cost three-dimensional modeling of crop plants[J]. Sensors, 2019, 19: ID 2883. | 34 | VAZQUEZ-ARELLANO M, PARAFOROS D S, REISER D, et al. Determination of stem position and height of reconstructed maize plants using a time-of-flight camera[J]. Computers and Electronics in Agriculture, 2018, 154: 276-288. | 35 | HAEMMERLE M, HOEFLE B. Mobile low-cost 3D camera maize crop height measurements under field conditions[J]. Precision Agriculture, 2018, 19(4): 630-647. | 36 | MA X, ZHU K, GUAN H, et al. High-throughput phenotyping analysis of potted soybean plants using colorized depth images based on a proximal platform[J]. Remote Sensing, 2019, 11(9): ID 1085. | 37 | XIONG X, YU L, YANG W, et al. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage[J]. Plant Methods, 2017, 13: ID 7. | 38 | MANO M. Precise and continuous measurement of plant heights in an agricultural field using a time-lapse camera[J]. Journal of Agricultural Meteorology, 2017, 73(3): 100-108. | 39 | SRITARAPIPAT T, RAKWATIN P, KASETKASEM T, et al. Automatic rice crop height measurement using a field server and digital image processing[J]. Sensors, 2014, 14(1): 900-926. | 40 | CAI J, KUMAR P, CHOPIN J, et al. Land-based crop phenotyping by image analysis: Accurate estimation of canopy height distributions using stereo images[J]. PloS One, 2018, 13(5): ID e0196671. | 41 | BROCKS S, BARETH G. Evaluating dense 3D reconstruction software packages for oblique monitoring of crop canopy surface[C]// The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic: XXIII ISPRS Congress, 2016: 785-789. | 42 | ZHANG Y, TENG P, AONO M, et al. 3D monitoring for plant growth parameters in field with a single camera by multi-view approach[J]. Journal of Agricultural Meteorology, 2018, 74(4): 129-139. | 43 | BENDIG J, BOLTEN A, BARETH G, et al. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability[J]. Photogramm Fernerkund Geoinf, 2013, 47(6): 551-562. | 44 | HOLMAN F H, RICHE A B, MICHALSKI A, et al. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing[J]. Remote Sensing, 2016, 8(12): ID 1031. | 45 | CHANG A, JUNG J, MAEDA M M, et al. Crop height monitoring with digital imagery from Unmanned Aerial System (UAS)[J]. Computers and Electronics in Agriculture, 2017, 141: 232-237. | 46 | 陶惠林, 徐良骥, 冯海宽, 等. 基于无人机数码影像的冬小麦株高和生物量估算[J]. 农业工程学报, 2019, 35(19): 107-116. | 46 | TAO H, XU L, FENG H, et al. Estimation of plant height and biomass of winter wheat based on UAV digital image[J]. Transactions of the CSAE, 2019, 35(19): 107-116. | 47 | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. | 48 | BELTON D, HELMHOLZ P, LONG J, et al. Crop height monitoring using a consumer-grade camera and UAV technology[J]. Journal of Photogrammetry Remote Sensing and Geoinformation Science, 2019, 87: 249-262. | 49 | HAN L, YANG G, DAI H, et al. Fuzzy clustering of maize plant-height patterns using time series of UAV remote-sensing images and variety traits[J]. Frontiers in Plant Science, 2019, 10: ID 926. | 50 | TIRADO S B, HIRSCH C N, SPRINGER N M, et al. UAV-based imaging platform for monitoring maize growth throughout development[J]. Plant Direct, 2020, 4(6): ID e00230. | 51 | 牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和LAI监测[J]. 农业工程学报, 2018, 34(5): 73-82. | 51 | NIU Q, FENG H, YANG G, et al. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images[J]. Transactions of the CSAE, 2018, 34(5): 73-82. | 52 | LIU H, ZHANG J, PAN Y, et al. An efficient approach based on UAV orthographic imagery to map paddy with support of field-level canopy height from point cloud data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(6): 2034-2046. | 53 | HU P, CHAPMAN S C, WANG X, et al. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding[J]. European Journal of Agronomy, 2018, 95: 24-32. | 54 | HAN X, THOMASSON J A, BAGNALL G C, et al. Measurement and calibration of plant-height from fixed-wing UAV images[J]. Sensors, 2018, 18(12): ID 4092. | 55 | SONG Y, WANG J. Winter wheat canopy height extraction from UAV-based point cloud data with a moving cuboid filter[J]. Remote Sensing, 2019, 11(5): ID 1239. | 56 | BORRA-SERRANO I, DE SWAEF T, QUATAERT P, et al. Closing the phenotyping gap: High resolution UAV time series for soybean growth analysis provides objective data from field trials[J]. Remote Sensing, 2020, 12(10): ID 1644. | 57 | XU R, LI C, PATERSON A H, et al. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping[J]. PloS One, 2019, 14(2): ID e0205083. | 58 | WU M, YANG C, SONG X, et al. Evaluation of orthomosics and digital surface models derived from aerial imagery for crop type mapping[J]. Remote Sensing, 2017, 9(3): ID 239. | 59 | GUO T, FANG Y, CHENG T, et al. Detection of wheat height using optimized multi-scan mode of LiDAR during the entire growth stages[J]. Computers and Electronics in Agriculture, 2019, 165: ID 104959. | 60 | HOFFMEISTER D, WALDHOFF G, KORRES W, et al. Crop height variability detection in a single field by multi-temporal terrestrial laser scanning[J]. Precision Agriculture, 2016, 17(3): 296-312. | 61 | 郭新年, 周恒瑞, 张国良, 等. 基于激光视觉的农作物株高测量系统[J]. 农业机械学报, 2018, 49(2): 22-27. | 61 | GUO X, ZHOU H, ZHANG G, et al. Crop height measurement system based on laser vision[J]. Transactions of the CSAM, 2018, 49(2): 22-27. | 62 | 程曼, 蔡振江, 袁洪波, 等. 基于地面激光雷达的田间花生冠层高度测量系统研制[J]. 农业工程学报, 2019, 35(1): 180-187. | 62 | CHENG M, CAI Z, YUAN H, et al. System design for peanut canopy height information acquisition based on LiDAR[J]. Transactions of the CSAE, 2019, 35(1): 180-187. | 63 | TAO H, FENG H, XU L, et al. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images[J]. Sensors, 2020, 20(4): ID 1231. | 64 | HAN L, YANG G, YANG H, et al. Clustering field-based maize phenotyping of plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach[J]. Frontiers in Plant Science, 2018, 9: ID 1638. | 65 | VARELA S, ASSEFA Y, PRASAD P V V, et al. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems[J]. Journal of Applied Remote Sensing, 2017, 11(3): ID 036013. | 66 | MHLANGA B, CHAUHAN B S, THIERFELDER C, et al. Weed management in maize using crop competition: A review[J]. Crop Protection, 2016, 88: 28-36. | 67 | YOUNGERMAN C Z, DITOMMASO A, CURRAN W S, et al. Corn density effect on interseeded cover crops, weeds, and grain yield[J]. Agronomy Journal, 2018, 110(6): 2478-2487. | 68 | ENCISO J, AVILA C A, JUNG J, et al. Validation of agronomic UAV and field measurements for tomato varieties[J]. Computers and Electronics in Agriculture, 2019, 158: 278-283. | 69 | BENDIG J, BOLTEN A, BENNERTZ S, et al. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging[J]. Remote Sensing, 2014, 6(11): 10395-10412. | 70 | POUND M P, FRENCH A P, MURCHIE E H, et al. Automated recovery of three-dimensional models of plant shoots from multiple color images[J]. Plant Physiology, 2014, 166(4): 1688-1698. | 71 | HASHEMINASAB S M, ZHOU T, HABIB A, et al. GNSS/INS-Assisted structure from motion strategies for UAV-Based imagery over mechanized agricultural fields[J]. Remote Sensing, 2020, 12(3): ID 351. | 72 | DANDRIFOSSE S, BOUVRY A, LEEMANS V, et al. Imaging wheat canopy through stereo vision: Overcoming the challenges of the laboratory to field transition for morphological features extraction[J]. Frontiers in Plant Science, 2020, 11: ID 96. | 73 | 邱小雷, 方圆, 郭泰, 等. 基于地基LiDAR高度指标的小麦生物量监测研究[J]. 农业机械学报, 2019, 50(10): 159-166. | 73 | QIU X, FANG Y, GUO T, et al. Monitoring of wheat biomass based on terrestrial-LiDAR height metric[J]. Transactions of the CSAM, 2019, 50(10): 159-166. | 74 | BUELVAS R M, ADAMCHUK V I, LEKSONO E, et al. Biomass estimation from canopy measurements for leafy vegetables based on ultrasonic and laser sensors[J]. Computers and Electronics in Agriculture, 2019, 164: ID 104896. | 75 | YUE J, YANG G, LI C, et al. Estimation of winter wheat above-ground biomass using Unmanned Aerial Vehicle-based snapshot hyperspectral sensor and crop height improved models[J]. Remote Sensing, 2017, 9(7): ID 708. | 76 | CEN H, WAN L, ZHU J, et al. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras[J]. Plant Methods, 2019, 15: ID 32. | 77 | BALLESTEROS R, FERNANDO ORTEGA J, HERNANDEZ D, et al. Onion biomass monitoring using UAV-based RGB imaging[J]. Precision Agriculture, 2018, 19(5): 840-857. | 78 | ZHOU L, GU X, CHENG S, et al. Analysis of plant height changes of lodged maize using UAV-LiDAR data[J]. Agriculture, 2020, 10(5): ID 146. | 79 | CHU T, STAREK M J, BREWER M J, et al. Assessing lodging severity over an experimental maize (Zea mays L.) field using UAS images[J]. Remote Sensing, 2017, 9(9): ID 923. | 80 | WILKE N, SIEGMANN B, KLINGBEIL L, et al. Quantifying lodging percentage and lodging severity using a UAV-based canopy height model combined with an objective threshold approach[J]. Remote Sensing, 2019, 11(5): ID 515. | 81 | GEIPEL J, LINK J, CLAUPEIN W, et al. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system[J]. Remote Sensing, 2014, 6(11): 10335-10355. | 82 | YU D, ZHA Y, SHI L, et al. Improvement of sugarcane yield estimation by assimilating UAV-derived plant height observations[J]. European Journal of Agronomy, 2020, 121: ID 126159. | 83 | FENG A, ZHOU J, VORIES E D, et al. Yield estimation in cotton using UAV-based multi-sensor imagery[J]. Biosystems Engineering, 2020, 193: 101-114. | 84 | LI B, XU X, ZHANG L, et al. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2020, 162: 161-172. | 85 | HASSAN M A, YANG M, FU L, et al. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat[J]. Plant Methods, 2019, 15: ID 37. | 86 | WANG X, ZHANG R, SONG W, et al. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV)[J]. Scientific Reports, 2019, 9: ID 3458. | 87 | ROTH L, STREIT B. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach[J]. Precision Agriculture, 2018, 19(1): 93-114. | 88 | BENDIG J, YU K, AASEN H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 79-87. | 89 | LI J, SHI Y, VEERANAMPALAYAM-SIVAKUMAR AN, et al. Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system[J]. Frontiers in Plant Science, 2018, 9: ID 1406. | 90 | MICHEZ A, BAUWENS S, BROSTAUX Y, et al. How far can consumer-grade uav rgb imagery describe crop production? A 3D and multitemporal modeling approach applied to Zea mays[J]. Remote Sensing, 2018, 10(11): ID 1798. | 91 | HAN L, YANG G, DAI H, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data[J]. Plant Methods, 2019, 15: ID 10. | 92 | ZHU W, SUN Z, PENG J, et al. Estimating maize above-ground biomass using 3D point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales[J]. Remote Sensing, 2019, 11(22): ID 2678. | 93 | GREAVES H E, VIERLING L A, EITEL J U H, et al. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR[J]. Remote Sensing of Environment, 2015, 164: 26-35. | 94 | GIL-DOCAMPO M L, ARZA-GARCIA M, ORTIZ-SANZ J, et al. Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry[J]. Geocarto International, 2020, 35(7): 687-699. | 95 | 杨琦, 叶豪, 黄凯, 等. 利用无人机影像构建作物表面模型估测甘蔗LAI[J]. 农业工程学报, 2017, 33(8): 104-111. | 95 | YANG Q, YE H, HUANG K, et al. Estimation of leaf area index of sugarcane using crop surface model based on UAV image[J]. Transactions of the CSAE, 2017, 33(8): 104-111. | 96 | SINGH D, WANG X, KUMAR U, et al. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat[J]. Frontiers in Plant Science, 2019, 10: ID 394. | 97 | SU W, ZHANG M, BIAN D, et al. Phenotyping of corn plants using Unmanned Aerial Vehicle (UAV) images[J]. Remote Sensing, 2019, 11(17): ID 2021. | 98 | HAN L, YANG G, FENG H, et al. Quantitative identification of maize lodging-causing feature factors using unmanned aerial vehicle images and a nomogram computation[J]. Remote Sensing, 2018, 10(10): ID 1528. | 99 | ACORSI M G, MARTELLO M, ANGNES G, et al. Identification of maize lodging: A case study using a remotely piloted aircraft system[J]. Engenharia Agricola, 2019, 39: 66-73. | 100 | LI J, VEERANAMPALAYAM-SIVAKUMAR AN, BHATTA M, et al. Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery[J]. Plant Methods, 2019, 15: ID 123. | 101 | ZHOU G, YIN X. Relationship of cotton nitrogen and yield with normalized difference vegetation index and plant height[J]. Nutrient Cycling in Agroecosystems, 2014, 100(2): 147-160. | 102 | XUE H, TIAN X, ZHANG K, et al. Mapping developmental QTL for plant height in soybean [Glycine max (L.) Merr.] using a four-way recombinant inbred line population[J]. PloS One, 2019, 14(11): ID e0224897. | 103 | HERTER C P, EBMEYER E, KOLLERS S, et al. Rht24 reduces height in the winter wheat population 'Solitar x Bussard' without adverse effects on Fusarium head blight infection[J]. Theoretical and Applied Genetics, 2018, 131(6): 1263-1272. | 104 | MA X, FENG F, WEI H, et al. Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes[J]. Frontiers in Plant Science, 2016, 7: ID 1801. | 105 | WATANABE K, GUO W, ARAI K, et al. High-throughput phenotyping of sorghum plant height using an Unmanned Aerial Vehicle and its application to genomic prediction modeling[J]. Frontiers in Plant Science, 2017, 8: ID 421. | 106 | KAKERU W, WEI G, KEIGO A, et al. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling[J]. Frontiers in Plant Science, 2017, 8: ID 421. | 107 | 刘忠, 万炜, 黄晋宇, 等. 基于无人机遥感的农作物长势关键参数反演研究进展[J]. 农业工程学报, 2018, 34(24): 60-71. | 107 | LIU Z, WAN W, HUANG J, et al. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing[J]. Transactions of the CSAE, 2018, 34(24): 60-71. | 108 | XIE T, LI J, YANG C, et al. Crop height estimation based on UAV images: methods, errors, and strategies[J]. Computers and Electronics in Agriculture, 2021, 185: ID 106155. | 109 | WALTER J D C, EDWARDS J, MCDONALD G, et al. Estimating biomass and canopy height with LiDAR for field crop breeding[J]. Frontiers in Plant Science, 2019, 10: ID 1145. | 110 | WANG H, WANG R, LIU B, et al. QTL analysis of salt tolerance in Sorghum bicolor during whole—plant growth stages[J]. Plant Breeding, 2020, 139(3): 455-465. | 111 | LIU F, HU P, ZHENG B, et al. A field-based high-throughput method for acquiring canopy architecture using unmanned aerial vehicle images[J]. Agricultural and Forest Meteorology, 2021, 296: ID 108231. | 112 | HU T, SUN X, SU Y, et al. Development and performance evaluation of a very low-cost UAV-LiDAR system for forestry applications[J]. Remote Sensing, 2020, 13(1): ID 77. | 113 | LUO S, LIU W, ZHANG Y, et al. Maize and soybean heights estimation from unmanned aerial vehicle (UAV) LiDAR data[J]. Computers and Electronics in Agriculture, 2021, 182: ID 106005. | 114 | 管贤平, 刘宽, 邱白晶, 等. 基于机载三维激光扫描的大豆冠层几何参数提取[J]. 农业工程学报, 2019, 35(23): 96-103. | 114 | GUAN X, LIU K, QIU B, et al. Extraction of geometric parameters of soybean canopy by airborne 3D laser scanning[J]. Transactions of the CSAE, 2019, 35(23): 96-103. | 115 | VIKHE P, VENKATESAN S, CHAVAN A, et al. Mapping of dwarfing gene Rht14 in durum wheat and its effect on seedling vigor, internode length and plant height[J]. The Crop Journal, 2019, 7(2): 187-197. | 116 | 刘永康, 李明军, 李景原, 等. 小麦旗叶直立转披动态过程对其高光效的影响[J]. 科学通报, 2009(15): 2205-2211. | 116 | LIU Y, LI M, LI J, et al. Dynamic changes in flag leaf angle contribute to high photosynthetic capacity[J]. Chinese Science Bulletin, 2009, 54(15): 2205-2211. | 117 | CHENG T, LU N, WANG W, et al. Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery[J]. Frontiers in Plant Science, 2019, 10: ID 1601. | 118 | CHE Y, WANG Q, XIE Z, et al. Estimation of maize plant height and leaf area index dynamic using unmanned aerial vehicle with oblique and nadir photography[J]. Annals of Botany, 2020, 126(4): 765-773. |
|