1 |
ALSTON J M, PARDEY P G. Chapter 75 The economics of agricultural innovation[J]. Handbook of agricultural economics, 2021, 5: 3895-3980.
|
2 |
NORTON G W, ALWANG J. Changes in agricultural extension and implications for farmer adoption of new practices[J]. Applied economic perspectives and policy, 2020, 42(1): 8-20.
|
3 |
LOWDER S K, SKOET J, RANEY T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide[J]. World development, 2016, 87: 16-29.
|
4 |
RICCIARDI V, RAMANKUTTY N, MEHRABI Z, et al. How much of the world's food do smallholders produce?[J]. Global food security, 2018, 17: 64-72.
|
5 |
RUTATORA D F, MATTEE A. Major agricultural extension providers in Tanzania[J]. African study monographs, 2001, 22(4): 155-173.
|
6 |
KLERKX L, JAKKU E, LABARTHE P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda[J]. NJAS: Wageningen journal of life sciences, 2019, 90/91(1): 1-16.
|
7 |
BASSO B, ANTLE J. Digital agriculture to design sustainable agricultural systems[J]. Nature sustainability, 2020, 3: 254-256.
|
8 |
BELLON-MAUREL V, LUTTON E, BISQUERT P, et al. Digital revolution for the agroecological transition of food systems: A responsible research and innovation perspective[J]. Agricultural systems, 2022, 203: ID 103524.
|
9 |
EASTWOOD C, AYRE M, NETTLE R, et al. Making sense in the cloud: Farm advisory services in a smart farming future[J]. NJAS: Wageningen journal of life sciences, 2019, 90: ID 100298.
|
10 |
FOUNTAS S, ESPEJO-GARCIA B, KASIMATI A, et al. The future of digital agriculture: Technologies and opportunities[J]. IT professional, 2020, 22(1): 24-28.
|
11 |
KUSKA M T, WAHABZADA M, PAULUS S. AI for crop production: Where can large language models (LLMs) provide substantial value?[J]. Computers and electronics in agriculture, 2024, 221: ID 108924.
|
12 |
RADOVICH T. Biology and classification of vegetables[M]// Siddiq M, Uebersax M A. Handbook of vegetables and vegetable processing. Hoboken, New Jersey: John Wiley & Sons Ltd. 2018.
|
13 |
FANG H, CHU B Q, HE Y, et al. Agricultural information processing technology[M]// Agriculture Automation and Control. Cham: Springer International Publishing, 2021: 219-250.
|
14 |
BENDER E M, GEBRU T, MCMILLAN-MAJOR A, et al. On the dangers of stochastic parrots: Can language models be too big?[C]// Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. New York, USA: ACM, 2021: 610-623.
|
15 |
WISEMAN L, SANDERSON J, ZHANG A R, et al. Farmers and their data: An examination of farmers' reluctance to share their data through the lens of the laws impacting smart farming[J]. NJAS: Wageningen journal of life sciences, 2019, 90: ID 100301.
|
16 |
ZHAI Z Q, ZHU Z X, DU Y F, et al. Multi-crop-row detection algorithm based on binocular vision[J]. Biosystems engineering, 2016, 150: 89-103.
|
17 |
KUNDU R, CHAUHAN U, CHAUHAN S P S. Plant leaf disease detection using image processing[C]// 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). Piscataway, New Jersey, USA: IEEE, 2022: 393-396.
|
18 |
ATTARAN M, CELIK B G. Digital twin: Benefits, use cases, challenges, and opportunities[J]. Decision analytics journal, 2023, 6: ID 100165.
|
19 |
EASTWOOD C, KLERKX L, AYRE M, et al. Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible research and innovation[J]. Journal of agricultural and environmental ethics, 2019, 32(5): 741-768.
|
20 |
PURCELL W, NEUBAUER T. Digital twins in agriculture: A state-of-the-art review[J]. Smart agricultural technology, 2023, 3: ID 100094.
|
21 |
CHANG Y B, LATHAM J, LICHT M, et al. A data-driven crop model for maize yield prediction[J]. Communications biology, 2023, 6(1): ID 439.
|
22 |
ASSOUS H F, AL-NAJJAR H, AL-ROUSAN N, et al. Developing a sustainable machine learning model to predict crop yield in the gulf countries[J]. Sustainability, 2023, 15(12): ID 9392.
|
23 |
CHANG Y P, WANG X, WANG J D, et al. A survey on evaluation of large language models[J]. ACM transactions on intelligent systems and technology, 2024, 15(3): 1-45.
|
24 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of NAACL-HLT 2019. Minneapolis, Minnesota, USA: ACL, 2019: 4171-4186.
|
25 |
WU T Y, HE S Z, LIU J P, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. CAA journal of automatica sinica, 2023, 10(5): 1122-1136.
|
26 |
WU J, LAI Z X, CHEN S Y, et al. The new agronomists: Language models are experts in crop management[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2024: 5346-5356.
|
27 |
VAN HOUDT G, MOSQUERA C, NÁPOLES G. A review on the long short-term memory model[J]. Artificial intelligence review, 2020, 53(8): 5929-5955.
|
28 |
SAGI O, ROKACH L. Approximating XGBoost with an interpretable decision tree[J]. Information sciences, 2021, 572: 522-542.
|
29 |
KE G, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017: 3149-3157.
|