| 1 | 
																						 
											   ALSTON J M,  PARDEY P G. Chapter 75 The economics of agricultural innovation[J]. Handbook of agricultural economics, 2021, 5: 3895-3980. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   NORTON G W,  ALWANG J. Changes in agricultural extension and implications for farmer adoption of new practices[J]. Applied economic perspectives and policy, 2020, 42(1): 8-20. 
											 											 | 
										
																													
																						| 3 | 
																						 
											   LOWDER S K,  SKOET J,  RANEY T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide[J]. World development, 2016, 87: 16-29. 
											 											 | 
										
																													
																						| 4 | 
																						 
											   RICCIARDI V,  RAMANKUTTY N,  MEHRABI Z, et al. How much of the world's food do smallholders produce?[J]. Global food security, 2018, 17: 64-72. 
											 											 | 
										
																													
																						| 5 | 
																						 
											   RUTATORA D F,  MATTEE A. Major agricultural extension providers in Tanzania[J]. African study monographs, 2001, 22(4): 155-173. 
											 											 | 
										
																													
																						| 6 | 
																						 
											   KLERKX L,  JAKKU E,  LABARTHE P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda[J]. NJAS: Wageningen journal of life sciences, 2019, 90/91(1): 1-16. 
											 											 | 
										
																													
																						| 7 | 
																						 
											   BASSO B,  ANTLE J. Digital agriculture to design sustainable agricultural systems[J]. Nature sustainability, 2020, 3: 254-256. 
											 											 | 
										
																													
																						| 8 | 
																						 
											   BELLON-MAUREL V,  LUTTON E,  BISQUERT P, et al. Digital revolution for the agroecological transition of food systems: A responsible research and innovation perspective[J]. Agricultural systems, 2022, 203: ID 103524. 
											 											 | 
										
																													
																						| 9 | 
																						 
											   EASTWOOD C,  AYRE M,  NETTLE R, et al. Making sense in the cloud: Farm advisory services in a smart farming future[J]. NJAS: Wageningen journal of life sciences, 2019, 90: ID 100298. 
											 											 | 
										
																													
																						| 10 | 
																						 
											   FOUNTAS S,  ESPEJO-GARCIA B,  KASIMATI A, et al. The future of digital agriculture: Technologies and opportunities[J]. IT professional, 2020, 22(1): 24-28. 
											 											 | 
										
																													
																						| 11 | 
																						 
											   KUSKA M T,  WAHABZADA M,  PAULUS S. AI for crop production: Where can large language models (LLMs) provide substantial value?[J]. Computers and electronics in agriculture, 2024, 221: ID 108924. 
											 											 | 
										
																													
																						| 12 | 
																						 
											   RADOVICH T. Biology and classification of vegetables[M]// Siddiq M, Uebersax M A. Handbook of vegetables and vegetable processing. Hoboken, New Jersey: John Wiley & Sons Ltd. 2018. 
											 											 | 
										
																													
																						| 13 | 
																						 
											   FANG H,  CHU B Q,  HE Y, et al. Agricultural information processing technology[M]// Agriculture Automation and Control. Cham: Springer International Publishing, 2021: 219-250. 
											 											 | 
										
																													
																						| 14 | 
																						 
											   BENDER E M,  GEBRU T,  MCMILLAN-MAJOR A, et al. On the dangers of stochastic parrots: Can language models be too big?[C]// Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. New York, USA: ACM, 2021: 610-623. 
											 											 | 
										
																													
																						| 15 | 
																						 
											   WISEMAN L,  SANDERSON J,  ZHANG A R, et al. Farmers and their data: An examination of farmers' reluctance to share their data through the lens of the laws impacting smart farming[J]. NJAS: Wageningen journal of life sciences, 2019, 90: ID 100301. 
											 											 | 
										
																													
																						| 16 | 
																						 
											   ZHAI Z Q,  ZHU Z X,  DU Y F, et al. Multi-crop-row detection algorithm based on binocular vision[J]. Biosystems engineering, 2016, 150: 89-103. 
											 											 | 
										
																													
																						| 17 | 
																						 
											   KUNDU R,  CHAUHAN U,  CHAUHAN S P S. Plant leaf disease detection using image processing[C]// 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). Piscataway, New Jersey, USA: IEEE, 2022: 393-396. 
											 											 | 
										
																													
																						| 18 | 
																						 
											   ATTARAN M,  CELIK B G. Digital twin: Benefits, use cases, challenges, and opportunities[J]. Decision analytics journal, 2023, 6: ID 100165. 
											 											 | 
										
																													
																						| 19 | 
																						 
											   EASTWOOD C,  KLERKX L,  AYRE M, et al. Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible research and innovation[J]. Journal of agricultural and environmental ethics, 2019, 32(5): 741-768. 
											 											 | 
										
																													
																						| 20 | 
																						 
											   PURCELL W,  NEUBAUER T. Digital twins in agriculture: A state-of-the-art review[J]. Smart agricultural technology, 2023, 3: ID 100094. 
											 											 | 
										
																													
																						| 21 | 
																						 
											   CHANG Y B,  LATHAM J,  LICHT M, et al. A data-driven crop model for maize yield prediction[J]. Communications biology, 2023, 6(1): ID 439. 
											 											 | 
										
																													
																						| 22 | 
																						 
											   ASSOUS H F,  AL-NAJJAR H,  AL-ROUSAN N, et al. Developing a sustainable machine learning model to predict crop yield in the gulf countries[J]. Sustainability, 2023, 15(12): ID 9392. 
											 											 | 
										
																													
																						| 23 | 
																						 
											   CHANG Y P,  WANG X,  WANG J D, et al. A survey on evaluation of large language models[J]. ACM transactions on intelligent systems and technology, 2024, 15(3): 1-45. 
											 											 | 
										
																													
																						| 24 | 
																						 
											   DEVLIN J,  CHANG M W,  LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of NAACL-HLT 2019. Minneapolis, Minnesota, USA: ACL, 2019: 4171-4186. 
											 											 | 
										
																													
																						| 25 | 
																						 
											   WU T Y,  HE S Z,  LIU J P, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. CAA journal of automatica sinica, 2023, 10(5): 1122-1136. 
											 											 | 
										
																													
																						| 26 | 
																						 
											   WU J,  LAI Z X,  CHEN S Y, et al. The new agronomists: Language models are experts in crop management[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2024: 5346-5356. 
											 											 | 
										
																													
																						| 27 | 
																						 
											   VAN HOUDT G,  MOSQUERA C,  NÁPOLES G. A review on the long short-term memory model[J]. Artificial intelligence review, 2020, 53(8): 5929-5955. 
											 											 | 
										
																													
																						| 28 | 
																						 
											   SAGI O,  ROKACH L. Approximating XGBoost with an interpretable decision tree[J]. Information sciences, 2021, 572: 522-542. 
											 											 | 
										
																													
																						| 29 | 
																						 
											   KE G,  MENG Q,  FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017: 3149-3157. 
											 											 |