| 1 | 
																						 
											   SHI J Y,  BAI Y H,  DIAO Z H, et al. Row detection BASED navigation and guidance for agricultural robots and autonomous vehicles in row-crop fields: Methods and applications[J]. Agronomy, 2023, 13(7): ID 1780. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   QU F H,  DING T Y,  ZHENG X M, et al. Verification of farmland crop row direction recognition method based on plot morphological characteristics[J]. Remote sensing technology and application, 2024, 39(5): 1213-1222. 
											 											 | 
										
																													
																						| 3 | 
																						 
											   BOCHKOVSKIY A,  WANG C Y,  LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. arXiv: 2004.10934, 2020. 
											 											 | 
										
																													
																						| 4 | 
																						 
											   YANG Z L,  YANG Y,  LI C R, et al. Tasseled crop rows detection based on micro-region of interest and logarithmic transformation[J]. Frontiers in plant science, 2022, 13: ID 916474. 
											 											 | 
										
																													
																						| 5 | 
																						 
											   FU D B,  JIANG Q,  QI L, et al. Detection of the centerline of rice seedling belts based on region growth sequential clustering-RANSAC[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(7): 47-57. 
											 											 | 
										
																													
																						| 6 | 
																						 
											   ZHAI Z Q,  XIONG K,  WANG L, et al. Crop row detection and tracking based on binocular vision and adaptive Kalman filter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 143-151. 
											 											 | 
										
																													
																						| 7 | 
																						 
											   PONNAMBALAM V R,  BAKKEN M,  MOORE R J D, et al. Autonomous crop row guidance using adaptive multi-ROI in strawberry fields[J]. Sensors, 2020, 20(18): ID 5249. 
											 											 | 
										
																													
																						| 8 | 
																						 
											   LIU X,  HU C H,  LI P P. Automatic segmentation of overlapped poplar seedling leaves combining Mask R-CNN and DBSCAN[J]. Computers and electronics in agriculture, 2020, 178: ID 105753. 
											 											 | 
										
																													
																						| 9 | 
																						 
											   DE SILVA R,  CIELNIAK G,  WANG G, et al. Deep learning-based crop row detection for infield navigation of agri-robots[J]. Journal of field robotics, 2024, 41(7): 2299-2321. 
											 											 | 
										
																													
																						| 10 | 
																						 
											   DE SILVA R,  CIELNIAK G,  GAO J F, et al. Towards agricultural autonomy: Crop row detection under varying field conditions using deep learning[EB/OL]. arXiv:2109.08247, 2021. 
											 											 | 
										
																													
																						| 11 | 
																						 
											   WANG C Y,  BOCHKOVSKIY A,  LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464-7475. 
											 											 | 
										
																													
																						| 12 | 
																						 
											   ZHENG Z Y,  LI J W,  QIN L F. YOLO-BYTE: An efficient multi-object tracking algorithm for automatic monitoring of dairy cows[J]. Computers and electronics in agriculture, 2023, 209: ID 107857. 
											 											 | 
										
																													
																						| 13 | 
																						 
											   ZHANG L M,  LIU G W,  QI Y D, et al. Research progress on key technologies of agricultural machinery unmanned driving system[J]. Journal of intelligent agricultural mechanization, 2022, 3(1): 27-36. 
											 											 | 
										
																													
																						| 14 | 
																						 
											   CUI X Y,  CUI B B,  MA Z, et al. Integration of geometric-based path tracking controller and its application in agricultural machinery automatic navigation[J]. Journal of intelligent agricultural mechanization, 2023, 4(3): 24-31. 
											 											 | 
										
																													
																						| 15 | 
																						 
											   Liu W,  Anguelov D,  Erhan D, et al. Ssd: Single shot multibox detector[C]// Computer Vision–ECCV 2016: 14th European Conference. Berlin, Germany: Springer, 2016: 21-37. 
											 											 | 
										
																													
																						| 16 | 
																						 
											   REN S,  HE K,  GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149. 
											 											 | 
										
																													
																						| 17 | 
																						 
											   BOOGAARD F P,  RONGEN K S A H,  KOOTSTRA G W. Robust node detection and tracking in fruit-vegetable crops using deep learning and multi-view imaging[J]. Biosystems engineering, 2020, 192: 117-132. 
											 											 | 
										
																													
																						| 18 | 
																						 
											   SIMONYAN K,  ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv: 1409.1556, 2014. 
											 											 | 
										
																													
																						| 19 | 
																						 
											   HE K M,  ZHANG X Y,  REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778. 
											 											 | 
										
																													
																						| 20 | 
																						 
											   HOWARD A G,  ZHU M L,  CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. arXiv: 1704.04861, 2017. 
											 											 | 
										
																													
																						| 21 | 
																						 
											   SANDLER M,  HOWARD A,  ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4510-4520. 
											 											 | 
										
																													
																						| 22 | 
																						 
											   HOWARD A,  SANDLER M,  CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 1314-1324. 
											 											 | 
										
																													
																						| 23 | 
																						 
											   HAN K,  WANG Y H,  TIAN Q, et al. GhostNet: More features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 1580-1589. 
											 											 | 
										
																													
																						| 24 | 
																						 
											   TANG Y,  HAN K,  GUO J, et al. GhostNetv2: Enhance cheap operation with long-range attention[J]. Advances in Neural Information Processing Systems, 2022, 35: 9969-9982. 
											 											 | 
										
																													
																						| 25 | 
																						 
											   SHI J Y,  BAI Y H,  ZHOU J, et al. Multi-crop navigation line extraction based on improved YOLOv8 and threshold-DBSCAN under complex agricultural environments[J]. Agriculture, 2023, 14(1): ID 45. 
											 											 | 
										
																													
																						| 26 | 
																						 
											   LIN T Y,  GOYAL P,  GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2980-2988. 
											 											 | 
										
																													
																						| 27 | 
																						 
											   CHI J,  GUO S,  ZHANG H, et al. L-GhostNet: Extract better quality features[J]. IEEE Access, 2023, 11: 2361-2374. 
											 											 | 
										
																													
																						| 28 | 
																						 
											   LIU F C,  YANG Y,  ZENG Y M, et al. Bending diagnosis of rice seedling lines and guidance line extraction of automatic weeding equipment in paddy field[J]. Mechanical systems and signal processing, 2020, 142: ID 106791. 
											 											 | 
										
																													
																						| 29 | 
																						 
											   GARCÍA-SANTILLÁN I D,  PAJARES G. On-line crop/weed discrimination through the Mahalanobis distance from images in maize fields[J]. Biosystems engineering, 2018, 166: 28-43. 
											 											 | 
										
																													
																						| 30 | 
																						 
											   DIAO Z H,  GUO P L,  ZHANG B H, et al. Maize crop row recognition algorithm based on improved UNet network[J]. Computers and electronics in agriculture, 2023, 210: ID 107940. 
											 											 | 
										
																													
																						| 31 | 
																						 
											   NAN Y L,  ZHANG H C,  ZENG Y, et al. Intelligent detection of Multi-Class pitaya fruits in target picking row based on WGB-YOLO network[J]. Computers and electronics in agriculture, 2023, 208: ID 107780. 
											 											 | 
										
																													
																						| 32 | 
																						 
											   CHEN J Q,  QIANG H,  WU J H, et al. Navigation path extraction for greenhouse cucumber-picking robots using the prediction-point Hough transform[J]. Computers and electronics in agriculture, 2021, 180: ID 105911. 
											 											 |