1 |
习近平. 发展新质生产力是推动高质量发展的内在要求和重要着力点[J]. 奋斗, 2024(11): 4-8.
|
|
XI J P. Developing new quality productivity is the inherent requirement and important focus of promoting high quality development[J]. Fendou, 2024(11): 4-8.
|
2 |
马晓河, 杨祥雪. 以加快形成新质生产力推动农业高质量发展[J]. 农业经济问题, 2024, 45(4): 4-12.
|
|
MA X H, YANG X X. Promoting high-quality agricultural development by accelerating the formation of new quality productivity[J]. Issues in agricultural economy, 2024, 45(4): 4-12.
|
3 |
姜长云. 农业新质生产力: 内涵特征、发展重点、面临制约和政策建议[J]. 南京农业大学学报(社会科学版), 2024, 24(3): 1-17.
|
|
JIANG C Y. The agricultural new quality productive forces: Connotations, development priorities, constraints and policy recommendations for the development[J]. Journal of Nanjing agricultural university (social sciences edition), 2024, 24(3): 1-17.
|
4 |
罗必良, 耿鹏鹏. 农业新质生产力: 理论脉络、基本内核与提升路径[J]. 农业经济问题, 2024, 45(4): 13-26.
|
|
LUO B L, GENG P P. New quality agricultural productivity: Theoretical framework, core concepts, and enhancement pathways[J]. Issues in agricultural economy, 2024, 45(4): 13-26.
|
5 |
魏后凯, 吴广昊. 以新质生产力引领现代化大农业发展[J]. 改革, 2024(5): 1-11.
|
|
WEI H K, WU G H. Leading the development of modern agriculture with new quality productivity forces[J]. Reform, 2024(5): 1-11.
|
6 |
唐瑜嵘, 沈明霞, 薛鸿翔, 等. 人工智能技术在畜禽养殖业的发展现状与展望 [J]. 智能化农业装备学报(中英文), 2023, 4(1): 1-16.
|
|
TAND Y R, SHEN M X, XUE H X, et al. Development status and prospect of artificial intelligence technology in livestock and poultry breeding[J]. Journal of intelligent agricultural mechanization, 2023, 4(1): 1-16
|
7 |
LI Y H, FU C G, YANG H, et al. Design of a closed piggery environmental monitoring and control system based on a track inspection robot[J]. Agriculture, 2023, 13(8): ID 1501.
|
8 |
NARAYANA T L, VENKATESH C, KIRAN A, et al. Advances in real time smart monitoring of environmental parameters using IoT and sensors[J]. Heliyon, 2024, 10(7): ID e28195.
|
9 |
秦英栋, 贾文珅. 基于NB-IoT网络的兔舍环境实时监测系统[J]. 智慧农业(中英文), 2023, 5 (1): 155-165.
|
|
QIN Y D, JIA W S. Real-time monitoring system for rabbit house environment based on NB-IoT network[J]. Smart agriculture, 2023, 5(1): 155-165.
|
10 |
CHEN C, LIU X Q. An intelligent monitoring system for a pig breeding environment based on a wireless sensor network[J]. International journal of sensor networks, 2019, 29(4): ID 275.
|
11 |
谢秋菊, 吴梦茹, 包军, 等. 融合注意力机制的个体猪脸识别[J]. 农业工程学报, 2022, 38(7): 180-188.
|
|
XIE Q J, WU M R, BAO J, et al. Individual pig face recognition combined with attention mechanism[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(7): 180-188.
|
12 |
WANG R, SHI Z, LI Q, et al. Pig face recognition model based on a cascaded network[J]. Applied engineering in agriculture, 2021, 37(5): 879-890.
|
13 |
周意, 毛宽民. 基于YOLO-Unet组合网络的牛只个体识别方法研究[J/OL]. 计算机科学, 1-13. [2025-01-14].
|
|
ZHOU Y, MAO K M. Method for cattle recognition based on YOLO-Unet model[J/OL]. Computer science, 1-13. [2025-01-14].
|
14 |
BAKHSHAYESHI I, ERFANI E, TAGHIKHAH F R, et al. An intelligence cattle reidentification system over transport by siamese neural networks and YOLO[J]. IEEE internet of things journal, 2024, 11(2): 2351-63.
|
15 |
BAO Y, LU H, ZHAO Q, et al. Detection system of dead and sick chickens in large scale farms based on artificial intelligence[J]. Mathematical biosciences and engineering, 2021, 18(5): 6117-6135.
|
16 |
赵一名, 沈明霞, 刘龙申, 等. 基于改进YOLOv5s和图像融合的笼养鸡死鸡检测方法研究[J]. 南京农业大学学报, 2024, 47(2): 369-382.
|
|
ZHAO Y M, SHEN M X, LIU L S, et al. Study on the method of detecting dead chickens in caged chicken based on improved YOLOv5s and image fusion[J]. Journal of Nanjing agricultural university, 2024, 47(2): 369-382.
|
17 |
刘峰, 吴文杰, 刘小磊, 等. 计算机视觉与深度学习在猪只识别中的研究进展[J]. 华中农业大学学报, 2023, 42(3): 47-56.
|
|
LIU F, WU W J, LIU X F, et al. Progress of computer vision and deep learning methods for pig's identity and behavior recognition[J]. Journal of huazhong agricultural university, 2023, 42(3): 47-56.
|
18 |
RIAL C, STANGAFERRO M L, THOMAS M J, et al. Effect of automated health monitoring based on rumination, activity, and milk yield alerts versus visual observation on herd health monitoring and performance outcomes[J]. Journal of dairy science, 2024, 107(12): 11576-11596.
|
19 |
李艳文, 李菊霞, 纳腾潇, 等. 基于YOLOX-NGS的群养猪只攻击行为识别[J]. 农业工程学报, 2023, 39(24): 177-184.
|
|
LI Y W, LI J X, NA T X, et al. Recognizing attack behavior of herd pigs using improved YOLOX[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(24): 177-184.
|
20 |
LI Q F, ZHUO Z Y, GAO R H, et al. A pig behavior-tracking method based on a multi-channel high-efficiency attention mechanism[J]. Agriculture communications, 2024, 2(4): ID 100062.
|
21 |
LIANG H T, HSU S W, HSU J T, et al. An IMU-based machine learning approach for daily behavior pattern recognition in dairy cows[J]. Smart agricultural technology, 2024, 9: ID 100539.
|
22 |
BAI Q, GAO R H, WANG R, et al. X3DFast model for classifying dairy cow behaviors based on a two-pathway architecture[J]. Scientific reports, 2023, 13(1): ID 20519.
|
23 |
ZHANG Y, LI X T, YANG Z Q, et al. Recognition and statistical method of cows rumination and eating behaviors based on Tensorflow.js[J]. Information processing in agriculture, 2024, 11(4): 581-589.
|
24 |
姚裔芃, 徐晨, 陈鸿基, 等. 基于关键点检测和多目标跟踪的猪只体尺估计[J]. 华南农业大学学报, 2024, 45(5): 722-729.
|
|
YAO Y P, XU C, CHEN H J, et al. Estimation of pig body measurements based on keypoint detection and multi-object tracking[J]. Journal of south China agricultural university, 2024, 45(5): 722-729.
|
25 |
耿艳利, 季燕凯, 岳晓东, 等. 基于点云语义分割的猪只体尺测量方法研究[J]. 农业机械学报, 2023, 54(7): 332-338, 380.
|
|
GENG Y L, JI Y K, YUE X D, et al. Pigs body size measurement based on point cloud semantic segmentation[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(7): 332-338, 380.
|
26 |
翁智, 范琦, 郑志强. 基于多模态图像信息及改进实例分割网络的肉牛体尺自动测量方法[J]. 智慧农业(中英文), 2024, 6(4): 64-75.
|
|
WENG Z, FAN Q, ZHENG Z Q. Automatic measurement method of beef cattle body size based on multimodal image information and improved instance segmentation network[J]. Smart agriculture, 2024, 6(4): 64-75.
|
27 |
熊本海, 蒋林树, 杨亮, 等. 种猪生产性能测定系统开发与性能测试[J]. 农业工程学报, 2017, 33(9): 174-179.
|
|
XIONG B H, JIANG L S, YANG L, et al. Design and performance testing of production performance determination system for boar[J]. Transactions of the Chinese society of agricultural engineering, 2017, 33(9): 174-179.
|
28 |
黄昊, 刘俊灵, 胡腾达, 等. 智能化母猪饲喂控制系统设计与试验[J]. 中国农机化学报, 2021, 42(10): 78-86.
|
|
HUANG H, LIU J L, HU T D, et al. Design and experiment of intelligent sow feeding control system[J]. Journal of Chinese agricultural mechanization, 2021, 42(10): 78-86.
|
29 |
GAUTHIER R, LARGOUËT C, ROZÉ L, et al. Online forecasting of daily feed intake in lactating sows supported by offline time-series clustering, for precision livestock farming[J]. Computers and electronics in agriculture, 2021, 188: ID 106329.
|
30 |
刘艳昌, 郭宇戈, 张志霞, 等. 基于LoRa的生猪体征监测系统设计与实现[J]. 中国农机化学报, 2024, 45(4): 66-71, 140.
|
|
LIU Y C, GUO Y G, ZHANG Z X, et al. Design and implementation of pig body feature monitoring system based on LoRa[J]. Journal of Chinese agricultural mechanization, 2024, 45(4): 66-71, 140.
|
31 |
ZHANG K, HAN S Q, WU J Z, et al. Early lameness detection in dairy cattle based on wearable gait analysis using semi-supervised LSTM-Autoencoder[J]. Computers and electronics in agriculture, 2023, 213: ID 108252.
|
32 |
LI Q, HE Z J, LIU X W, et al. Lameness detection system for dairy cows based on instance segmentation[J]. Expert systems with applications, 2024, 249: ID 123775.
|
33 |
LI Q, SI Y S, CHU M Y, et al. Lameness detection of dairy cows based on key frame positioning and posture analysis[J]. Computers and electronics in agriculture, 2024, 227: ID 109537.
|
34 |
吴振邦, 陈泽锴, 田绪红, 等. 基于3D卷积视频分析的猪步态评分方法[J]. 华南农业大学学报, 2024, 45(5): 743-753.
|
|
WU Z B, CHEN Z K, TIAN X H, et al. A method for pig gait scoring based on 3D convolution video analysis[J]. Journal of South China agricultural university, 2024, 45(5): 743-753.
|
35 |
张博, 罗维平. 基于Swin-Unet的奶牛饲料消耗状态监测方法[J]. 华南农业大学学报, 2024, 45(5): 754-763.
|
|
ZHANG B, LUO W P. Feed consumption status monitoring method of dairy cows based on Swin-Unet[J]. Journal of South China agricultural university, 2024, 45(5): 754-763.
|
36 |
WANG S L, JIANG H H, QIAO Y L, et al. The research progress of vision-based artificial intelligence in smart pig farming [J]. Sensors, 2022, 22(17): 6541.
|
37 |
沈明霞, 王梦雨, 刘龙申, 等. 基于深度神经网络的猪咳嗽声识别方法[J]. 农业机械学报, 2022, 53(5): 257-266.
|
|
SHEN M X, WANG M Y, LIU L S, et al. Recognition method of pig cough based on deep neural network[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(5): 257-266.
|
38 |
PAN W H, LI H L, ZHOU X B, et al. Research on pig sound recognition based on deep neural network and hidden markov models[J]. Sensors, 2024, 24(4): ID 1269.
|
39 |
杜晓冬, 滕光辉, 刘慕霖, 等. 基于轻量级卷积神经网络的种鸡发声识别方法[J]. 农业机械学报, 2022, 53(10): 271-276.
|
|
DU X D, TENG G H, LIU M L, et al. Recognition method of breeding Birds' Vocalization based on lightweight convolutional neural network[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(10): 271-276.
|
40 |
刘剑锋, 邱小田, 周磊, 等. 猪全产业链育种技术及其国内外应用现状[J]. 中国畜牧杂志, 2024, 60(7): 1-5.
|
|
LIU J F, QIU X T, ZHOU L, et al. Breeding technology of pig whole industry chain and its application status at home and abroad[J]. Chinese journal of animal science, 2024, 60(7): 1-5.
|
41 |
中华人民共和国教育部. 高等教育分学科门类研究生数(总计)[EB/OL]. (2023-12-29) [2024-06-29].
|
42 |
何沛桐, 张建华, 张凝, 等. 基于视觉感知的畜禽智慧养殖管理与疫病诊断研究进展[J]. 中国农业大学学报, 2023, 28(10): 141-165.
|
|
HE P T, ZHANG J H, ZHANG N, et al. Research progress in intelligent livestock and poultry breeding management and disease diagnosis based on visual perception[J]. Journal of China agricultural university, 2023, 28(10): 141-165.
|