1 | Strange R N , Scott P R . Plant disease: A threat to global food security[J]. Annual Review of Phytopathology, 2005, 43(1): 83-116. | 2 | 黄文江 . 作物病害遥感监测机理与应用[M]. 北京: 农业科技出版社, 2009. | 3 | Deutsch C A , Tewksbury J J , Tigchelaar M , et al . Increase in crop losses to insect pests in a warming climate[J]. Science, 2018, 361(6405): 916-919. | 4 | 陶凤英, 潘云鹤, 栾金波 . 农作物病虫害专业化统防统治的现状与发展对策[J]. 内蒙古农业科技, 2011(2): 96-97. | 4 | Tao F , Pang Y , Luan J . Development status of professional control of crop diseases and insect pests and countermeasures [J]. Inner Mongolia Agricultural Science and Technology, 2011(2): 96-97. | 5 | Piao S , Ciais P , Huang Y , et al . The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467(7311): 43-51. | 6 | 黄文江, 张竞成, 罗菊花, 等 . 作物病虫害遥感监测与预测[M]. 北京: 科学出版社, 2015. | 7 | Huang W , Yang Q , Pu R , et al . Estimation of nitrogen vertical distribution by bi-directional canopy reflectance in winter wheat[J]. Sensors, 2014, 14(11): 20347-20359. | 8 | Khanal S , Fulton J , Shearer S . An overview of current and potential applications of thermal remote sensing in precision agriculture[J]. Computers and Electronics in Agriculture, 2017, 139: 22-32. | 9 | Sankaran S , Khot L R , Espinoza C Z , et al . Low-alti tude, high-resolution aerial imaging systems for row and field crop phenotyping: A review[J]. European Journal of Agronomy, 2015, 70: 112-123. | 10 | Mesas-Carrascosa F J , Torres-Sánchez J , Clavero-Rumbao I , et al . Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management[J]. Remote Sensing, 2015, 7(10): 12793-12814. | 11 | Liu Y , Pu H , Sun D W . Hyperspectral imaging tech nique for evaluating food quality and safety during various processes: A review of recent applications[J]. Trends in Food Science & Technology, 2017, 69: 25-35. | 12 | Mahlein A K , Rumpf T , Welke P , et al . Development of spectral indices for detecting and identifying plant diseases[J]. Remote Sensing of Environment, 2013, 128(1): 21-30. | 13 | Su J , Liu C , Coombes M , et al . Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J]. Computers and Electronics in Agriculture, 2018, 155: 157-166. | 14 | Franke J , Menz G . Multi-temporal wheat disease detection by multi-spectral remote sensing[J]. Precision Agriculture, 2007, 8(3): 161-172. | 15 | Liu Z Y , Wu H F , Huang J F . Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis[J]. Computers and Electronics in Agriculture, 2010, 72(2): 99-106. | 16 | Zhang B , Huang W , Li J , et al . Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review[J]. Food Research International, 2014, 62(62): 326-343. | 17 | Zhang J C , Yuan L , Pu R , et al . Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat[J]. Computers and Electronics in Agriculture, 2014, 100(2): 79-87. | 18 | Lin Y , Pu R , Zhang J , et al . Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348. | 19 | Yao Z , He D , Lei Y . Hyperspectral Imaging for identification of powdery mildew and stripe rust in wheat[C]// 2018 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2018. | 20 | 王海光, 马占鸿, 王韬, 等 . 高光谱在小麦条锈病严重度分级识别中的应用[J]. 光谱学与光谱分析, 2007, 27(9): 1811-1814. | 20 | Wang H , Ma Z , Wang T , et al . Application of hyperspectral data to the classification and identification of severity of wheat stripe rust[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1811-1814. | 21 | Naidu R A , Perry E M , Pierce F J , et al . The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars[J]. Computers and Electronics in Agriculture, 2009, 66(1): 38-45. | 22 | Prabhakar M , Prasad Y G , Thirupathi M , et al . Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J]. Computers and Electronics in Agriculture, 2011, 79(2): 189-198. | 23 | Luo J , Huang W , Zhao J , et al . Detecting aphid density of winter wheat leaf using hyperspectral measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2): 690-698. | 24 | Spinelli F , Noferini M , Costa G . Near infrared spectroscopy (NIRs): Perspective of fire blight detection in asymptomatic plant material[J]. Acta Horticulturae, 2006, 704(704): 87-90. | 25 | Purcell D E , O'shea M G , Johnson R A , et al . Near-Infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones[J]. Applied Spectroscopy, 2009, 63(4): 450-457. | 26 | Shi Y , Huang W , Luo J , et al . Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and Electronics in Agriculture, 2017, 141:171-180. | 27 | Lowe A , Harrison N , French A P . Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress[J]. Plant Methods, 2017, 13(1): no. 80, 1-12. | 28 | Chen B , Wang K , Li S , et al . Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level[C]// Proceedings of First IPIF TC 12 International Conference on Computer and Computing Technologies in Agriculture, (CCTA 2007)(Ⅱ.2007. | 29 | Shi Y , Huang W , Zhou X , et al . Evaluation of wavelet spectral features in pathological detection and discrimination of yellow rust and powdery mildew in winter wheat with hyperspectral reflectance data[J]. Journal of Applied Remote Sensing, 2017, 11(2): 026025. | 30 | Delalieux S , Van A J , Keulemans W , et al . Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications[J]. European Journal of Agronomy, 2007, 27(1): 130-143. | 31 | Han L , Haleem M S , Taylor M . Automatic detection and severity assessment of crop diseases using image pattern recognition[M]. Emerging Trends and Advanced Technologies for Computational Intelligence. Springer, Cham, 2016. | 32 | Wu D , Feng L , Zhang C , et al . Early detection of botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2008, 51(3): 1133-1139. | 33 | Pan L , Lu R , Zhu Q , et al . Predict compositions and mechanical properties of sugar beet using hyperspectral scattering[J]. Food and Bioprocess Technology, 2016, 9(7): 1177-1186. | 34 | Pu R , Ge S , Kelly N M , et al . Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves[J]. International Journal of Remote Sensing, 2003, 24(9): 1799-1810. | 35 | Zarco-Tejada P J , Berj N A , Pez-Lozano RL , et al . Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy[J]. Remote Sensing of Environment, 2005, 99(3): 271-287. | 36 | Rouse J W , Haas R H , Schell J A , et al . Monitoring vegetation systems in the great plains with Erts[J]. Nasa Special Publication, 1974, (351): 3010-3017. | 37 | Broge N H , Leblanc E . Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2):156-172. | 38 | Kim D G , Burks T F , Qin J W , et al . Classification of grapefruit peel diseases using color texture feature analysis[J]. International Journal of Agricultural and Biological Engineering, 2009, 2(3): 41-50. | 39 | Gitelson A A . Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean[J]. Remote Sensing Letters, 2019, 10(3): 283-291. | 40 | Gitelson A A , Gritz Y , Merzlyak M N . Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282. | 41 | Devadas R , Lamb D W , Simpfendorfer S , et al . Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves[J]. Precision Agriculture, 2009, 10(6): 459-470. | 42 | Ren H , Zhou G , Zhang F . Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands[J]. Remote Sensing of Environment, 2018, 209: 439-445. | 43 | Féret J B , le Maire G , Berveiller S J , et al . Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[J]. Remote Sensing of Environment, 2019, 231: no.110959, 1-14. | 44 | Mirik M , Kassymzhanova-Mirik S , Elliott N C , et al . Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat[J]. Computers and Electronics in Agriculture, 2006, 51(1-2): 86-98. | 45 | Yuan L , Zhang J C , Shi Y , et al . Damage mapping of powdery mildew in winter wheat with high-resolution satellite image[J]. Remote Sensing, 2014, 6(5): 3611-3623. | 46 | Held A . Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery[J]. International Journal of Remote Sensing, 2004, 25(2): 489-498. | 47 | Lenthe J H , Oerke E C , Dehne H W , et al . Digital infrared thermography for monitoring canopy health of wheat[J]. Precision Agriculture, 2007, 8(1-2): 15-26. | 48 | Yang C , Everitt J H , Fernandez C J . Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot[J]. Biosystems Engineering, 2010, 107(2): 131-139. | 49 | Panmanas S , Yuki H , Munehiro T . Study on non-destructive evaluation methods for defect pods for green soybean processing by near-infrared spectroscopy[J]. Journal of Food Engineering, 2009, 93(4): 502-512. | 50 | Wang X , Zhang M , Zhu J , et al . Spectral prediction of phytophthora infestans infection on tomatoes using artificial neural network (ANN)[J]. International Journal of Remote Sensing, 2008, 29(6): 1693-1706. | 51 | Yao Q , Guan Z , Zhou Y , et al . Application of support vector machine for detecting rice diseases using shape and color texture features[C]// 2009 International Conference on Engineering Computation, 2009. | 52 | Zhang X , Han L , Dong Y , et al . A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images[J]. Remote Sensing, 2019, 11(13): 1554. | 53 | Su J , Liu C , Coombes M , et al . Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J]. Computers and Electronics in Agriculture, 2018, 155: 157-166. | 54 | Bohnenkamp D , Behmann J , Mahlein A K . In-field detection of yellow rust in wheat on the ground canopy and UAV scale[J]. Remote Sensing, 2019, 11(21): 2495. | 55 | Shi Y , Huang W , Luo J , et al . Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and Electronics in Agriculture, 2017, 141: 171-180. | 56 | Qin W , Xue X , Zhang S , et al . Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 27-32. | 57 | Liu W , Cao X , Fan J , et al . Detecting wheat powdery mildew and predicting grain yield using unmanned aerial photography[J]. Plant Disease, 2018, 102(10): 1981-1988. | 58 | Meng Y , Lan Y , Mei G , et al . Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 46-53. | 59 | Severtson D , Callow N , Flower K , et al . Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola[J]. Precision Agriculture, 2016, 17(6): 659-677. | 60 | Kumar S , R?der M S , Singh R P , et al . Mapping of spot blotch disease resistance using NDVI as a substitute to visual observation in wheat (Triticumaestivum L.)[J]. Molecular Breeding, 2016, 36(7): no.95,1-11. | 61 | Albetis J , Jacquin A , Goulard M , et al . On the potentiality of UAV multispectral imagery to detect flavescence dorée and grapevine trunk diseases[J]. Remote Sensing, 2019, 11(1): 23. | 62 | Li X , Andaloro J T , Lang E B , et al . Best Management Practices for Unmanned Aerial Vehicles (UAVs) Application of Insecticide Products on Rice[C]// 2019 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2019. | 63 | Mutanga O , Dube T , Galal O . Remote sensing of crop health for food security in Africa: Potentials and constraints[J]. Remote Sensing Applications: Society and Environment, 2017, 8: 231-239. | 64 | Cao F , Liu F , Guo H , et al . Fast detection of sclerotinia sclerotiorum on oilseed rape leaves using low-altitude remote sensing technology[J]. Sensors, 2018, 18(12): 4464. | 65 | Zhang P , Wang K , Lyu Q , et al . Droplet distribution and control against citrus leafminer with UAV spraying[J]. International Journal of Robotics and Automation, 2017, 32(3): 299-307. | 66 | Schultink A , Qi T , Bally J , et al . Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4[J]. New Phytologist, 2019, 221(2): 1001-1009. | 67 | Altas Z , Ozguven M M , Yanar Y . Determination of sugar beet leaf spot disease level (cercospora beticola sacc) with image processing technique by using drone[J]. Current Investigations in Agriculture and Current Research, 2018, 5(3): 669-678. | 68 | Chen D , Shi Y , Huang W , et al . Mapping wheat rust based on high spatial resolution satellite imagery[J]. Computers and Electronics in Agriculture, 2018, 152: 109-116. | 69 | Du X , Li Q , Shang J , et al . Detecting advanced stages of winter wheat yellow rust and aphid infection using RapidEye data in North China Plain[J]. GIScience & Remote Sensing, 2019, 56(7): 1093-1113. | 70 | Yuan L , Pu R , Zhang J , et al . Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348. | 71 | Skawsang S , Nagai M , Tripathi N K , et al . Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of thailand[J]. Applied Sciences, 2019, 9(22): 4846. | 72 | Shi Y , Huang W , Ye H , et al . Partial least square discriminant analysis based on normalized two-stage vegetation indices for mapping damage from rice diseases using planetscope datasets[J]. Sensors, 2018, 18(6): 1901. | 73 | Song X , Yang C , Wu M , et al . Evaluation of sentinel-2A satellite imagery for mapping cotton root rot[J]. Remote Sensing, 2017, 9(9): 906, 1-17. | 74 | Staggenborg S A , Lascano R J , Krieg D R . Determining cotton water use in a semiarid climate with the GOSSYM cotton simulation model[J]. Agronomy Journal, 1996, 88(5): 740-745. | 75 | Saunders D G O , Pretorius Z A , Hovm?ller M S . Tackling the re-emergence of wheat stem rust in Western Europe[J]. Communications Biology, 2019, 2(1): 51, 1-3. |
|