XU Wenwen1,2(), YU Kejian3, DAI Zexu1,2, WU Yunzhi1,2(
)
Received:
2025-04-06
Online:
2025-06-16
Foundation items:
2024 Anhui Provincial Science and Technology Innovation Plan Project(202423k09020031)
About author:
XU Wenwen, E-mail: wenwenxu@stu.ahau.edu.cn
corresponding author:
WU Yunzhi, E-mail: wuyzh@ahau.edu.cnCLC Number:
XU Wenwen, YU Kejian, DAI Zexu, WU Yunzhi. A Transfer Learning-Based Multimodal Model for Grape Detection and Counting[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202504005.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202504005
Table 3
Results of object detection experiments of different models in grape detection research
模型 | mAP/% | mAP50/% | mAP75/% | mAR/% | epochs |
---|---|---|---|---|---|
YOLOv3 | 22.0 | 57.0 | 11.3 | 37.3 | 200 |
DDQ | 27.7 | 45.5 | 28.6 | 70 | |
Grid R-CNN | 32.0 | 63.3 | 28.6 | 48.5 | 70 |
AutoAssign | 6.50 | 21.2 | 1.50 | 26.2 | 170 |
PISA | 29.7 | 60.0 | 25.6 | 44.2 | 100 |
NAS-FPN | 52.8 | 80 | |||
Faster R-CNN | 28.0 | 53.4 | 26.4 | 48.4 | 100 |
Dynamic R-CNN | 23.0 | 48.9 | 19.7 | 40.3 | 80 |
ATSS | 9.60 | 28.6 | 3.20 | 32.6 | 170 |
Grounding DINO | 1.50 | 2.90 | 1.60 | 33.1 | |
GDCNet | 53.2 | 80.3 | 58.2 | 76.5 | 30 |
Table 4
Results of target detection at different scales in grape detection research
模型 | mAP_s | mAP_m | mAP_l | mAR_s | mAR_m | mAR_l |
---|---|---|---|---|---|---|
YOLOv3 | 35.7 | 15.6 | 18.3 | 35.6 | 27.0 | 41.8 |
DDQ | 15.9 | 24.9 | ||||
Grid R-CNN | 47.0 | 26.6 | 28.8 | 46.9 | 36.2 | 54.6 |
AutoAssign | 28.4 | 2.4 | 4.4 | 28.3 | 8.0 | 29.0 |
PISA | 44.3 | 16.8 | 27.1 | 44.3 | 26.8 | 48.7 |
NAS-FPN | 51.7 | 51.8 | 43.7 | 57.3 | ||
Faster R-CNN | 47.0 | 21.7 | 24.6 | 46.9 | 36.5 | 54.7 |
Dynamic R-CNN | 39.2 | 14.8 | 19.6 | 39.2 | 23.9 | 45.5 |
ATSS | 34.2 | 7.4 | 6.2 | 34.0 | 16.6 | 35.1 |
Grounding DINO | 36.2 | 5.60 | 0.90 | 36.0 | 12.9 | 34.6 |
GDCNet | 74.2 | 45.9 | 43.8 | 74.7 | 75.4 | 83.5 |
1 | PALACIOS F, MELO-PINTO P, DIAGO M P, et al. Deep learning and computer vision for assessing the number of actual berries in commercial vineyards[J]. Biosystems engineering, 2022, 218: 175-188. |
2 | LIU S, COSSELL S, TANG J L, et al. A computer vision system for early stage grape yield estimation based on shoot detection[J]. Computers and electronics in agriculture, 2017, 137: 88-101. |
3 | WOHLFAHRT Y, COLLINS C, STOLL M. Grapevine bud fertility under conditions of elevated carbon dioxide[J]. OENO one, 2019, 53(2): ID 2428. |
4 | DE LA FUENTE M, LINARES R, BAEZA P, et al. Comparison of different methods of grapevine yield prediction in the time window between fruitset and veraison[J]. OENO one, 2016, 49(1): ID 27. |
5 | DIAGO M P, TARDAGUILA J, ALEIXOS N, et al. Assessment of cluster yield components by image analysis[J]. Journal of the science of food and agriculture, 2015, 95(6): 1274-1282. |
6 | CARRILLO E, MATESE A, ROUSSEAU J, et al. Use of multi-spectral airborne imagery to improve yield sampling in viticulture[J]. Precision agriculture, 2016, 17(1): 74-92. |
7 | SILVER D L, MONGA T. In vino veritas: Estimating vineyard grape yield from images using deep learning[M]// Advances in Artificial Intelligence. Cham: Springer International Publishing, 2019: 212-224. |
8 | BUAYAI P, SAIKAEW K R, MAO X Y. End-to-end automatic berry counting for table grape thinning[J]. IEEE access, 2021, 9: 4829-4842. |
9 | AQUINO A, MILLAN B, DIAGO M P, et al. Automated early yield prediction in vineyards from on-the-go image acquisition[J]. Computers and electronics in agriculture, 2018, 144: 26-36. |
10 | SHEN L, SU J Y, HE R T, et al. Real-time tracking and counting of grape clusters in the field based on channel pruning with YOLOv5s[J]. Computers and electronics in agriculture, 2023, 206: ID 107662. |
11 | 张传栋, 高鹏, 亓璐, 等. 基于SAW-YOLO v8n的葡萄幼果轻量化检测方法[J]. 农业机械学报, 2024, 55(10): 286-294. |
ZHANG C D, GAO P, QI L, et al. Lightweight detection method for young grape cluster fruits based on SAW-YOLO v8n[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(10): 286-294. | |
12 | COVIELLO L, CRISTOFORETTI M, JURMAN G, et al. GBCNet: In-field grape berries counting for yield estimation by dilated CNNs[J]. Applied sciences, 2020, 10(14): ID 4870. |
13 | ZABAWA L, KICHERER A, KLINGBEIL L, et al. Detection of single grapevine berries in images using fully convolutional neural networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2019: 2571-2579. |
14 | WANG Q, FAN X J, ZHUANG Z Q, et al. One to all: Toward a unified model for counting cereal crop heads based on few-shot learning[J]. Plant phenomics, 2024, 6: ID 271. |
15 | 刘畅, 孙雨, 杨晶, 等. 基于3C-YOLOv8n和深度相机的葡萄识别与定位方法[J]. 智慧农业(中英文), 2024, 6(6): 121-131. |
LIU C, SUN Y, YANG J, et al. Grape recognition and localization method based on 3C-YOLOv8n and depth camera[J]. Smart agriculture, 2024, 6(6): 121-131. | |
16 | YU C H, SHI X Y, LUO W K, et al. MLG-YOLO: A model for real-time accurate detection and localization of winter jujube in complex structured orchard environments[J]. Plant phenomics, 2024, 6: ID 258. |
17 | DU W S, LIU P. Instance segmentation and berry counting of table grape before thinning based on AS-SwinT[J]. Plant phenomics, 2023, 5: ID 0085. |
18 | LU S L, LIU X Y, HE Z X, et al. Swin-transformer-YOLOv5 for real-time wine grape bunch detection[J]. Remote sensing, 2022, 14(22): ID 5853. |
19 | WANG J H, ZHANG Z Y, LUO L F, et al. SwinGD: A robust grape bunch detection model based on swin transformer in complex vineyard environment[J]. Horticulturae, 2021, 7(11): ID 492. |
20 | XIA L H, LIU J B, WU T. Depth estimation algorithm based on transformer-encoder and feature fusion[C]// 2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE). Piscataway, New Jersey, USA: IEEE, 2024: 160-164. |
21 | WANG J H, ZHANG Z Y, LUO L F, et al. DualSeg: Fusing transformer and CNN structure for image segmentation in complex vineyard environment[J]. Computers and electronics in agriculture, 2023, 206: ID 107682. |
22 | AHMEDT-ARISTIZABAL D, SMITH D, KHOKHER M R, et al. An in-field dynamic vision-based analysis for vineyard yield estimation[J]. IEEE access, 2024, 12: 102146-102166. |
23 | ZHENG S J, WANG R J, ZHENG S T, et al. Adaptive density guided network with CNN and Transformer for underwater fish counting[J]. Journal of king Saud university-computer and information sciences, 2024, 36(6): ID 102088. |
24 | ZHANG C J, LIU T, WANG J X, et al. DeepPollenCount: A swin-transformer-YOLOv5-based deep learning method for pollen counting in various plant species[J]. Aerobiologia, 2024, 40(3): 425-436. |
25 | CECOTTI H, RIVERA A, FARHADLOO M, et al. Grape detection with convolutional neural networks[J]. Expert systems with applications, 2020, 159: ID 113588. |
26 | XUE X Q, NIU W D, HUANG J X, et al. TasselNetV2++: A dual-branch network incorporating branch-level transfer learning and multilayer fusion for plant counting[J]. Computers and electronics in agriculture, 2024, 223: ID 109103. |
27 | CAO B Y, ZHANG B H, ZHENG W, et al. Real-time, highly accurate robotic grasp detection utilizing transfer learning for robots manipulating fragile fruits with widely variable sizes and shapes[J]. Computers and electronics in agriculture, 2022, 200: ID 107254. |
28 | BAI Y H, GUO Y X, ZHANG Q, et al. Multi-network fusion algorithm with transfer learning for green cucumber segmentation and recognition under complex natural environment[J]. Computers and electronics in agriculture, 2022, 194: ID 106789. |
29 | CHEN D, LU Y Z, LI Z J, et al. Performance evaluation of deep transfer learning on multi-class identification of common weed species in cotton production systems[J]. Computers and electronics in agriculture, 2022, 198: ID 107091. |
30 | ZHA Z H, SHI D Y, CHEN X H, et al. Classification of appearance quality of red grape based on transfer learning of convolution neural network[J]. Agronomy, 2023, 13(8): ID 2015. |
31 | GAI R L, LIU Y, XU G H. TL-YOLOv8: A blueberry fruit detection algorithm based on improved YOLOv8 and transfer learning[J]. IEEE access, 2024, 12: 86378-86390. |
32 | SANTOS T T, DE SOUZA L L, DOS SANTOS A A, et al. Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association[J]. Computers and electronics in agriculture, 2020, 170: ID 105247. |
33 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]// Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 213-229. |
34 | LI L H, ZHANG P C, ZHANG H T, et al. Grounded language-image pre-training[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2022: 10955-10965. |
35 | ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[EB/OL]. arXiv: , 2022. |
36 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv: , 2018. |
37 | ZHANG S L, WANG X J, WANG J Q, et al. Dense distinct query for end-to-end object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7329-7338. |
38 | ZHU B J, WANG J F, JIANG Z K, et al. AutoAssign: Differentiable label assignment for dense object detection[EB/OL]. arXiv: , 2020. |
39 | ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 9756-9765. |
40 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149. |
41 | ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: Towards high quality object detection via dynamic training[C]// Computer Vision–ECCV 2020: 16th European Conference. Cham, Germany: Springer International Publishing, 2020: 260-275. |
42 | LU X, LI B Y, YUE Y X, et al. Grid R-CNN[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 7355-7364. |
43 | GHIASI G, LIN T Y, LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 7029-7038. |
44 | Cao Y, Chen K, Loy C C, et al. Prime sample attention in object detection[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Piscataway, New Jersey, USA: IEEE. 2020: 11583-11591. |
45 | LIU S L, ZENG Z Y, REN T H, et al. Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection[EB/OL]. arXiv: , 2023. |
46 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 618-626. |
[1] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[2] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[3] | YANG Chenxue, LI Xian, ZHOU Qingbo. Knowledge Graph Driven Grain Big Data Applications: Overview and Perspective [J]. Smart Agriculture, 2025, 7(2): 26-40. |
[4] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[5] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
[6] | JIN Ning, GUO Yufeng, HAN Xiaodong, MIAO Yisheng, WU Huarui. Method for Calculating Semantic Similarity of Short Agricultural Texts Based on Transfer Learning [J]. Smart Agriculture, 2025, 7(1): 33-43. |
[7] | WU Huarui, ZHAO Chunjiang, LI Jingchen. Agri-QA Net: Multimodal Fusion Large Language Model Architecture for Crop Knowledge Question-Answering System [J]. Smart Agriculture, 2025, 7(1): 1-10. |
[8] | YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan. Rice Leaf Disease Image Enhancement Based on Improved CycleGAN [J]. Smart Agriculture, 2024, 6(6): 96-108. |
[9] | LI Hongbo, TIAN Xin, RUAN Zhiwen, LIU Shaowen, REN Weiqi, SU Zhongbin, GAO Rui, KONG Qingming. Seedling Stage Corn Line Detection Method Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(6): 72-84. |
[10] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
[11] | GUO Wei, WU Huarui, GUO Wang, GU Jingqiu, ZHU Huaji. Research Status and Prospect of Quality Intelligent Control Technology in Facilities Environment of Characteristic Agricultural Products [J]. Smart Agriculture, 2024, 6(6): 44-62. |
[12] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
[13] | FU Zhuojun, HU Zheng, DENG Yangjun, LONG Chenfeng, ZHU Xinghui. Detection Method of Apple Alternaria Leaf Spot Based on Deep-Semi-NMF [J]. Smart Agriculture, 2024, 6(6): 144-154. |
[14] | YE Dapeng, JING Jun, ZHANG Zhide, LI Huihuang, WU Haoyu, XIE Limin. MSH-YOLOv8: Mushroom Small Object Detection Method with Scale Reconstruction and Fusion [J]. Smart Agriculture, 2024, 6(5): 139-152. |
[15] | PENG Xiaodan, CHEN Fengjun, ZHU Xueyan, CAI Jiawei, GU Mengmeng. Dense Nursery Stock Detecting and Counting Based on UAV Aerial Images and Improved LSC-CNN [J]. Smart Agriculture, 2024, 6(5): 88-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||