Received:2025-06-03
Online:2025-11-03
Foundation items:National Natural Science Foundation of China Project(51567014); Gansu Provincial Science and Technology Program(22JR5RA797)
corresponding author:
CLC Number:
YAO Xiaotong, QU Shaoye. A Lightweight Detection Method for Pepper Leaf Diseases Based on Improved YOLOv12m[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202506005.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202506005
Table 4
Ablation experiments with YOLO-MDFR model for self-built datasets
| 名称 | 改进的MobileNetV4(含双3×3) | D-F-Ramit | RAGConv | mAP%0.5 | Params/M | GFLOPs /G | FPS |
|---|---|---|---|---|---|---|---|
| YOLOv12m | × | × | × | 93.6 | 0.91 | 19.7 | 33.4 |
| YOLO-Mob | √ | × | × | 91.8 | 0.29 | 5.8 | 46.5 |
| YOLO-MD | √ | √ | × | 92.3 | 0.36 | 6.5 | 38.7 |
| YOLO-MR | √ | × | √ | 90.8 | 0.34 | 5.5 | 56.4 |
| YOLO-MDFR(未平衡数据) | √ | √ | √ | 93.8 | 0.35 | 6.2 | 43.4 |
| YOLO-MDFR | √ | √ | √ | 95.6 | 0.35 | 6.2 | 43.4 |
Table 5
Comprehensive Performance Comparison of Different Object Detection Models on the Custom Chili Dataset
| 模型名称 | mAP%0.5 | Params/M | GFLOPs/G | FPS/(帧/s) | Epochs | Batch_size |
|---|---|---|---|---|---|---|
| Faster R-CNN | 60.9 | 13 700 | 370.2 | 5.3 | 500 | 16 |
| YOLOv11n | 90.8 | 260 | 6.6 | 53.1 | 500 | 16 |
| YOLOv10b | 92.2 | 200 | 99.4 | 39.5 | 500 | 16 |
| YOLOv9s | 89.7 | 750 | 12.5 | 55.0 | 500 | 16 |
| YOLOv8n | 91.9 | 320 | 8.9 | 85.0 | 500 | 16 |
| YOLOv5s | 90.0 | 700 | 15.8 | 68.1 | 500 | 16 |
| SSD | 60.7 | 260 | 62.7 | 46.0 | 500 | 16 |
| RT-DETR | 91.2 | 320 | 100.0 | 50.0 | 500 | 16 |
| YOLO-MDFR | 95.6 | 350 | 6.2 | 43.4 | 500 | 16 |
Table 6
Detection Accuracy Comparison of YOLO-MDFR and YOLOv12m on Lesions at Various Scales
| 病斑尺度/像素 | 样本数量/张 | YOLOv12m mAP/% | YOLO-MDFR mAP/% | 提升幅度/个百分点 |
|---|---|---|---|---|
| 超小目标(<8×8) | 126 | 22.8 | 28.5 | 5.7 |
| 极小目标(8—16) | 348 | 30.2 | 33.5 | 3.3 |
| 小目标(16—32) | 512 | 53.2 | 54.4 | 1.2 |
| 中目标(32—96) | 897 | 75.1 | 77.6 | 1.5 |
| 大目标(≥96) | 1 203 | 81.4 | 82.2 | 0.8 |
Table 7
Measured Deployment Performance of the YOLO-MDFR Model on the RK3588 Platform
| 指标 | 数值 | 说明 |
|---|---|---|
| 平均单帧延迟 | 43.8 ms | 全流程耗时,含图像预处理(20 ms,含尺寸缩放与归一化)+模型推理(23.8 ms,NPU 加速) |
| 稳定帧率 | 22.8 FPS | 由单帧延迟推算(1 000 ms/43.8 ms≈22.8),满足田间实时检测要求(行业标准≥15 FPS) |
| idle 功耗 | 2.1 W | 开发板通电但无图像输入时的静态功耗,反映设备待机能耗 |
| 推理功耗 | 3.5 W | 连续输入图像并执行检测时的平均动态功耗,含 NPU、CPU、内存协同工作能耗 |
| 1小时连续检测功耗 | 12.6 Wh | 由推理功耗推算(3.5 W×3.6 h=12.6 Wh),适配 12V/1 000 mAh(12 Wh)锂电池供电的移动设备 |
Table 8
Performance comparison of YOLO-MDFR under different input resolutions
| 输入分辨率(宽×高)/像素 | mAP%0.5 | 极小目标 mAP/% | 各类别 mAP 标准差/% | Params/G | GFLOPs/G | FPS/(帧/s) |
|---|---|---|---|---|---|---|
| 320×320 | 89.5 | 25.3 | 5.8 | 0.35 | 1.6 | 65.2 |
| 416×416 | 92.3 | 28.7 | 4.2 | 0.35 | 2.7 | 58.6 |
| 512×512 | 94.1 | 31.2 | 3.1 | 0.35 | 4.0 | 50.3 |
| 640×640 | 95.6 | 33.5 | 2.4 | 0.35 | 6.2 | 43.4 |
| 736×736 | 96.2 | 34.8 | 2.1 | 0.35 | 8.9 | 35.1 |
| [1] |
付浩, 夏忠敏, 张小明. 贵州省辣椒产业改革发展成效及对策建议[J]. 南方农业, 2022, 16(11): 68-72, 76.
|
|
|
|
| [2] |
邹玮, 岳延滨, 冯恩英, 等. 基于MobileNet V2的辣椒果实炭疽病识别及其应用[J]. 贵州农业科学, 2024, 52(9): 125-132.
|
|
|
|
| [3] |
兰玉彬, 单常峰, 王庆雨, 等. 不同喷雾助剂在植保无人机喷施作业中对雾滴沉积特性的影响[J]. 农业工程学报, 2021, 37(16): 31-38.
|
|
|
|
| [4] |
苏柯雨, 罗必良. 连片种植能促进农户的绿色生产行为吗 : 以化肥、农药减量施用为例[J]. 华中农业大学学报(社会科学版), 2024(5): 44-56.
|
|
|
|
| [5] |
刘梦姝, 张春琪, 晁金阳, 等. 基于YOLO v8n改进的小麦病害检测系统[J]. 农业机械学报, 2024, 55(S1): 280-287, 355.
|
|
|
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
石天怡, 南新元, 郭翔羽, 等. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83-96.
|
|
|
|
| [10] |
魏天宇, 柳天虹, 张善文, 等. 基于改进YOLOv5s的辣椒采摘机器人识别定位方法[J]. 扬州大学学报(自然科学版), 2023, 26(1): 61-69.
|
|
|
|
| [11] |
王震鲁, 白涛, 李东亚, 等. 基于改进YOLOv5的绿辣椒目标检测方法[J]. 新疆农业科学, 2024, 61(12): 3032-3041.
|
|
|
|
| [12] |
邹玮, 岳延滨, 冯恩英, 等. 基于YOLO v2的辣椒叶部蚜虫图像识别[J]. 山东农业大学学报(自然科学版), 2023, 54(5): 700-709.
|
|
|
|
| [13] |
李桂松, 黎敬涛, 杨艳丽, 等. 基于改进残差网络的马铃薯叶片病害识别[J]. 湖南农业大学学报(自然科学版), 2024, 50(6): 123-128.
|
|
|
|
| [14] |
|
| [15] |
蔄志贤. 基于频域分析的多尺度卷积神经网络[J]. 河北软件职业技术学院学报, 2025, 27(2): 13-16, 43.
|
|
|
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
WOO S,
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
姜舒, 陈琨, 丁卫平, 等. Axial-FNet: 基于模糊卷积结合门控轴向自注意力的皮肤癌图像分割模型[J]. 智能科学与技术学报, 2025, 7(2): 221-233.
|
|
|
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [1] | WANG Yi, XUE Rong, HAN Wenting, SHAO Guomin, HOU Yanqiao, CUI Xitong. Estimation of Maize Aboveground Biomass Based on CNN-LSTM-SA [J]. Smart Agriculture, 2025, 7(4): 159-173. |
| [2] | PENG Qiujun, LI Weiran, LIU Yeqiang, LI Zhenbo. High-Precision Fish Pose Estimation Method Based on Improved HRNet [J]. Smart Agriculture, 2025, 7(3): 160-172. |
| [3] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [4] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [5] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [6] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
| [7] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
| [8] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [9] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
| [10] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
| [11] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
| [12] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
| [13] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
| [14] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
| [15] | DAI Xin, WANG Junhao, ZHANG Yi, WANG Xinjie, LI Yanxing, DAI Baisheng, SHEN Weizheng. Automatic Detection Method of Dairy Cow Lameness from Top-view Based on the Fusion of Spatiotemporal Stream Features [J]. Smart Agriculture, 2024, 6(4): 18-28. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
