ZHAO Licheng1,2, LU Xinyu2, WU Qian2, REN Ni2, ZHOU Lingli2, CHENG Yawen2, HU Anqi2, QI Chao2(
)
Received:2025-07-30
Online:2025-12-09
Foundation items:National Natural Science Foundation of China Youth Fund Program(32201664); Development of Key Technologies and System for Efficient Tomato Harvesting Robots in Dynamic and Unstructured Environments(CX(24)1021); Development and Application of a Robotic Platform for Facility-Grown Tomato Harvesting(JSYTH08)
About author:ZHAO Licheng, E-mail: zhao_orange@163.com
corresponding author:
CLC Number:
ZHAO Licheng, LU Xinyu, WU Qian, REN Ni, ZHOU Lingli, CHENG Yawen, HU Anqi, QI Chao. An Improved YOLOv10-Based Tomato Ripeness Detection Algorithm with LAMP Channel Pruning[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202507045.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202507045
Table 2
Ablation experiment of segnext attention mechanism for cluster tomato maturity detection
| 模型 | 红熟早期/% | 红熟中期/% | 红熟晚期/% | mAP50/% | FPS | 权重文件大小/MB | 参数量/MB | GFLOPs/GB |
|---|---|---|---|---|---|---|---|---|
| YOLOv10 | 79.1 | 81.8 | 87.5 | 82.8 | 37.37 | 107.7 | 45.811 | 106.700 |
| YOLOv10+SegNeXt | 84.6 (+5.5) | 89.5(+7.7) | 88.4(+0.9) | 87.5(+4.7) | 35.8 (-1.57) | 107.6 (-0.1) | 53.522 | 228.765 |
Table 3
Ablation experiment on the pruning of the lamp model
| 模型 | 红熟早期/% | 红熟中期/% | 红熟晚期/% | mAP50/% | FPS | 权重文件大小/MB | 参数量/MB | GFLOPs/GB |
|---|---|---|---|---|---|---|---|---|
| YOLOv10+SegNeXt | 84.6 | 89.5 | 88.4 | 87.5 | 35.8 | 107.6 | 53.5 | 228.7 |
| YOLOv10+SegNeXt +DWConv | 75.4 (-9.2) | 75.0 (-14.5) | 82.2 (-6.2) | 77.5 (-10.0) | 37.7 (+1.9) | 52.2 (-55.5) | 21.1 (-32.4) | 115.2 (-113.5) |
| YOLOv10+SegNeXt +Lamp | 81.4 (-3.2) | 84.3 (-5.2) | 91.9(+3.5) | 85.9 (-1.6) | 66.9 (+23.1) | 40.0 (-67.7) | 19.7 (-33.7) | 114.2 (-114.5) |
Table 4
Comparison of the attention-enhanced model with mainstream object detection models
| 模型名称 | mAP50/% | FPS | GFLOPs/G | 模型参数量/MB | 权重文件大小/MB |
|---|---|---|---|---|---|
| SSD | 77.3 | 43.22 | 37.8 | 21.472 | 91.6 |
| Faster RCNN | 80.7 | 15.75 | 177.3 | 115.684 | 108.3 |
| YOLOv7 | 76.0 | 48.25 | 51.6 | 36.490 | 71.3 |
| YOLO8n | 84.5 | 39.89 | 8.1 | 3.006 | 6.3 |
| YOLO8s | 84.0 | 43.82 | 28.4 | 11.127 | 22.5 |
| YOLO8m | 82.5 | 45.41 | 78.7 | 25.841 | 52.0 |
| YOLO8l | 83.6 | 39.91 | 164.8 | 43.609 | 87.7 |
| YOLO8x | 82.4 | 37.54 | 257.4 | 68.126 | 136.7 |
| YOLOv10n | 82.8 | 43.57 | 6.0 | 2.207 | 5.6 |
| YOLOv10s | 81.9 | 44.49 | 21.4 | 7.219 | 16.5 |
| YOLOv10m | 82.5 | 44.57 | 58.9 | 15.315 | 33.5 |
| YOLOv10l | 82.6 | 37.37 | 228.7 | 53.522 | 107.7 |
| YOLOv10x | 79.0 | 41.60 | 160 | 29.399 | 130.4 |
| YOLOv11n | 85.9 | 43.99 | 6.3 | 2.583 | 5.5 |
| YOLOv11s | 85.3 | 43.12 | 21.3 | 9.414 | 19.2 |
| YOLOv11m | 85.3 | 37.89 | 67.7 | 20.032 | 40.5 |
| YOLOv11l | 85.9 | 37.15 | 194.4 | 56.830 | 114.4 |
| YOLOv11x | 84.0 | 37.21 | 194.4 | 58.362 | 114.4 |
| YOLOv12n | 84.1 | 39.71 | 5.8 | 2.509 | 11.2 |
| YOLOv12s | 82.0 | 40.57 | 19.3 | 9.074 | 18.6 |
| YOLOv12m | 84.6 | 41.98 | 59.5 | 17.579 | 39.7 |
| YOLOv12l | 79.9 | 36.23 | 82.1 | 26.396 | 53.7 |
| YOLOv12x | 81.3 | 33.39 | 184.1 | 59.248 | 119.5 |
| YOLOv10 l + SegNeXt | 87.5 | 66.20 | 114.2 | 19.765 | 40.0 |
Table 5
Detection performance analysis of different YOLOv10 models with SegNeXt and Lamp modules
| 模型名称 | mAP50/% | FPS | GFLOPs/G | 模型参数量/MB | 权重文件大小/MB |
|---|---|---|---|---|---|
| YOLOv10n | 82.8 | 43.57 | 6.000 | 2.207 | 5.6 |
| YOLOv10n+ SegNeXt | 85.5 | 41.50 | 8.600 | 2.450 | 6.3 |
| YOLOv10n+ SegNeXt+Lamp | 84.8 | 51.20 | 6.500 | 2.000 | 5.1 |
| YOLOv10l | 82.6 | 37.37 | 106.700 | 45.811 | 107.7 |
| YOLOv10 l + SegNeXt | 87.5 | 35.80 | 228.765 | 53.522 | 107.6 |
| YOLOv10l+ SegNeXt+Lamp | 85.9 | 66.90 | 114.252 | 19.765 | 40.0 |
| [1] |
汉永乾, 孙步功, 张鹏, 等. 农业采摘机器人研究进展[J]. 林业机械与木工设备, 2023, 51(4): 4-8.
|
|
|
|
| [2] |
刘成良, 贡亮, 苑进, 等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报, 2022, 53(7): 1-22, 55.
|
|
|
|
| [3] |
赵敬, 王全有, 褚幼晖, 等. 农业采摘机器人发展分析及前景展望[J]. 农机使用与维修, 2023(6): 63-70.
|
|
|
|
| [4] |
张东彦, 高玥, 程涛, 等. 基于YOLOv8-FECA的密集场景下小麦赤霉病孢子目标检测[J]. 农业工程学报, 2024, 40(21): 127-136.
|
|
|
|
| [5] |
张勤, 陈建敏, 李彬, 等. 基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法[J]. 农业工程学报, 2021, 37(18): 143-152.
|
|
|
|
| [6] |
毕智健, 张若宇, 齐妍杰, 等. 基于机器视觉的番茄成熟度颜色判别[J]. 食品与机械, 2016, 32(12): 133-136.
|
|
|
|
| [7] |
|
| [8] |
王俊平,徐刚.机器视觉和电子鼻融合的番茄成熟度检测方法[J].食品与机械,2022,38(02):148-152.DOI:10.13652/j.issn.1003-5788.2022.02.025 .
|
|
|
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
中华全国供销合作社. 中华人民共和国供销合作行业标准: GH/T 1193-2021 [S]. 北京:中华全国供销合作社,2021.
|
|
All China Supply and Marketing Cooperatives. Supply and Marketing Cooperation Industry Standard of the People's Republic of China: GH/T 1193-2021 [S]. Beijing: All China Supply and Marketing Cooperatives, 2021
|
|
| [13] |
王新, 唐灿, 朱建新, 等. 基于深度增强与特征抗噪的夜间串番茄成熟度识别方法[J]. 农业机械学报, 2025, 56(4): 363-374.
|
|
|
|
| [14] |
SA I,
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
WOO S,
|
| [20] |
|
| [21] |
KC K,
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
姚晓通, 曲绍业. 基于改进YOLOv12m的辣椒叶片病害与虫害轻量化检测方法[J/OL].智慧农业(中英文), [2025-11-25].
|
|
|
| [1] | LIU Yiheng, LIU Libo. Beef Cattle Object Detection Method Under Occlusion Environment Based on Improved YOLOv12 [J]. Smart Agriculture, 2025, 7(5): 182-192. |
| [2] | WANG Yi, XUE Rong, HAN Wenting, SHAO Guomin, HOU Yanqiao, CUI Xitong. Estimation of Maize Aboveground Biomass Based on CNN-LSTM-SA [J]. Smart Agriculture, 2025, 7(4): 159-173. |
| [3] | PENG Qiujun, LI Weiran, LIU Yeqiang, LI Zhenbo. High-Precision Fish Pose Estimation Method Based on Improved HRNet [J]. Smart Agriculture, 2025, 7(3): 160-172. |
| [4] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [5] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [6] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [7] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
| [8] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [9] | CHEN Junlin, ZHAO Peng, CAO Xianlin, NING Jifeng, YANG Shuqin. Lightweight YOLOv8s-Based Strawberry Plug Seedling Grading Detection and Localization via Channel Pruning [J]. Smart Agriculture, 2024, 6(6): 132-143. |
| [10] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
| [11] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
| [12] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
| [13] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
| [14] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
| [15] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||